cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005550 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,2).

This page as a plain text file.
%I A005550 M3012 #22 Dec 26 2021 21:20:38
%S A005550 3,16,57,184,601,2036,7072,25088,90503,330836,1222783,4561058,
%T A005550 17145990,64888020,246995400,944986464,3631770111,14013725268,
%U A005550 54268946152,210842757798,821569514032,3209925357702,12572219405144
%N A005550 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,2).
%C A005550 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%D A005550 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005550 D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.
%H A005550 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%Y A005550 Cf. A001335, A003289, A003290, A003291, A005549, A005551, A005552, A005553.
%K A005550 nonn,walk,more
%O A005550 3,1
%A A005550 _N. J. A. Sloane_
%E A005550 More terms and title improved by _Sean A. Irvine_, Feb 15 2016
%E A005550 a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019