This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005551 M5090 #22 Dec 26 2021 21:20:45 %S A005551 1,20,130,576,2218,8170,29830,109192,402258,1492746,5578742,20986424, %T A005551 79420122,302175648,1155298598,4436375790,17103294308,66174208076, %U A005551 256870951048,1000080994758,3904276709604,15280413966512 %N A005551 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (0,4). %C A005551 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. %D A005551 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005551 D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352. %H A005551 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a> %Y A005551 Cf. A001335, A003289, A003290, A003291, A005549, A005550, A005552, A005553. %K A005551 nonn,walk,more %O A005551 4,2 %A A005551 _N. J. A. Sloane_ %E A005551 More terms and improved title from _Sean A. Irvine_, Feb 14 2016 %E A005551 a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019