cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005552 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,3).

This page as a plain text file.
%I A005552 M3657 #22 Dec 26 2021 21:20:54
%S A005552 4,35,166,633,2276,8107,29086,105460,386320,1428664,5327738,20014741,
%T A005552 75677726,287784832,1099944240,4223170456,16280541834,62992268833,
%U A005552 244536402984,952154191644,3717618386556,14551788319328
%N A005552 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,3).
%C A005552 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%D A005552 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005552 D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.
%H A005552 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%Y A005552 Cf. A001335, A003289, A003290, A003291, A005549, A005550, A005551, A005553.
%K A005552 nonn,walk,more
%O A005552 4,1
%A A005552 _N. J. A. Sloane_
%E A005552 More terms and title improved by _Sean A. Irvine_, Feb 15 2016
%E A005552 a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019