This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005560 M2987 #39 Feb 03 2025 11:53:57 %S A005560 1,3,15,45,189,588,2352,7560,29700,98010,382239,1288287,5010005, %T A005560 17177160,66745536,232092432,901995588,3173688180,12342120700, %U A005560 43861998180,170724392916,611947174608,2384209771200,8609646396000,33577620944400,122041737663300,476432168185575 %N A005560 Number of walks on square lattice. Column y=2 of A052174. %D A005560 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005560 Vincenzo Librandi, <a href="/A005560/b005560.txt">Table of n, a(n) for n = 2..1000</a> %H A005560 R. K. Guy, <a href="/A005555/a005555.pdf">Letter to N. J. A. Sloane, May 1990</a> %H A005560 R. K. Guy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6, w_n'(2). %F A005560 a(n) = C(n+3, ceiling(n/2))*C(n+2, floor(n/2)) - C(n+3, ceiling((n-1)/2))*C(n+2, floor((n-1)/2)). - _Paul D. Hanna_, Apr 16 2004 %F A005560 Conjecture: (n-1)*(n-2)*(2*n+1)*(n+5)*(n+4)*a(n) -4*n*(n+1)*(2*n^2+4*n+19)*a(n-1) -16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - _R. J. Mathar_, Apr 02 2017 %p A005560 wnprime := proc(n,y) %p A005560 local k; %p A005560 if type(n-y,'even') then %p A005560 k := (n-y)/2 ; %p A005560 binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ; %p A005560 else %p A005560 k := (n-y-1)/2 ; %p A005560 binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ; %p A005560 end if; %p A005560 end proc: %p A005560 A005560 := proc(n) %p A005560 wnprime(n,2) ; %p A005560 end proc: %p A005560 seq(A005560(n),n=2..20) ; # _R. J. Mathar_, Apr 02 2017 %t A005560 Table[Binomial[n+3, Ceiling[n/2]] Binomial[n+2, Floor[n/2]]-Binomial[n+3, Ceiling[(n-1)/2]] Binomial[n+2, Floor[(n-1)/2]], {n, 0, 30}] (* _Vincenzo Librandi_, Apr 03 2017 *) %o A005560 (PARI) {a(n)=binomial(n+3,ceil(n/2))*binomial(n+2,floor(n/2)) - binomial(n+3,ceil((n-1)/2))*binomial(n+2,floor((n-1)/2))} %o A005560 (Magma) [Binomial(n+3, Ceiling(n/2))*Binomial(n+2, Floor(n/2)) - Binomial(n+3, Ceiling((n-1)/2))*Binomial(n+2, Floor((n-1)/2)): n in [0..30]]; // _Vincenzo Librandi_, Apr 03 2017 %Y A005560 Cf. A005558, A005559, A005561, A005562, A093768. %Y A005560 Cf. A052174. %K A005560 nonn,walk %O A005560 2,2 %A A005560 _N. J. A. Sloane_