cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005573 Number of walks on cubic lattice (starting from origin and not going below xy plane).

This page as a plain text file.
%I A005573 M3943 #96 Jan 19 2025 14:42:05
%S A005573 1,5,26,139,758,4194,23460,132339,751526,4290838,24607628,141648830,
%T A005573 817952188,4736107172,27487711752,159864676803,931448227590,
%U A005573 5435879858958,31769632683132,185918669183370,1089302293140564
%N A005573 Number of walks on cubic lattice (starting from origin and not going below xy plane).
%C A005573 Binomial transform of A026378, second binomial transform of A001700. - _Philippe Deléham_, Jan 28 2007
%C A005573 The Hankel transform of [1,1,5,26,139,758,...] is [1,4,15,56,209,...](see A001353). - _Philippe Deléham_, Apr 13 2007
%D A005573 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005573 Vincenzo Librandi, <a href="/A005573/b005573.txt">Table of n, a(n) for n = 0..1000</a>
%H A005573 Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H A005573 Emeric Deutsch and Jim Brawner, <a href="http://www.jstor.org/stable/2695431">Problem 10795: Three-Dimensional Lattice Walks in the Upper Half-Space</a>, Amer. Math. Monthly, 108 (Dec. 2001), 980.
%H A005573 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez/florez4.html">Further Results on Paths in an n-Dimensional Cubic Lattice</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
%H A005573 R. K. Guy, <a href="/A005555/a005555.pdf">Letter to N. J. A. Sloane, May 1990</a>
%H A005573 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, Sandsteps and Pascal Pyramids</a>, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
%H A005573 Aoife Hennessy, <a href="http://repository.wit.ie/1693">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
%H A005573 Paveł Szabłowski, <a href="https://cdm.ucalgary.ca/article/view/76214">Beta distributions whose moment sequences are related to integer sequences listed in the OEIS</a>, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
%F A005573 From _Emeric Deutsch_, Jan 09 2003; corrected by _Roland Bacher_: (Start)
%F A005573 a(n) = Sum_{i=0..n} (-1)^i*6^(n-i)*binomial(n, i)*binomial(2*i, i)/(i+1);
%F A005573 g.f. A(x) satisfies: x(1-6x)A^2 + (1-6x)A - 1 = 0. (End)
%F A005573 From _Henry Bottomley_, Aug 23 2001: (Start)
%F A005573 a(n) = 6*a(n-1) - A005572(n-1).
%F A005573 a(n) = Sum_{j=0..n} 4^(n-j)*binomial(n, floor(n/2))*binomial(n, j). (End)
%F A005573 a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k+1, k)*2^(n-k).
%F A005573 a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Catalan(k)*6^(n-k).
%F A005573 D-finite with recurrence (n+1)*a(n) = (8*n+2)*a(n-1)-(12*n-12)*a(n-2). - _Vladeta Jovovic_, Jul 16 2004
%F A005573 a(n) = Sum_{k=0..n} A052179(n,k). - _Philippe Deléham_, Jan 28 2007
%F A005573 Conjecture: a(n)= 6^n * hypergeom([1/2,-n],[2], 2/3). - _Benjamin Phillabaum_, Feb 20 2011
%F A005573 From _Paul Barry_, Apr 21 2009: (Start)
%F A005573 G.f.: (sqrt((1-2*x)/(1-6*x)) - 1)/(2*x).
%F A005573 G.f.: 1/(1-5*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). (End)
%F A005573 G.f.: 1/(1 - 4*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
%F A005573 a(n) ~ 6^(n+1/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 05 2012
%F A005573 G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-2*x) - 2*x*(1-2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-2*x)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 24 2013
%F A005573 a(n) = 2^n*hypergeom([-n, 3/2], [2], -2). - _Peter Luschny_, Apr 26 2016
%F A005573 E.g.f.: exp(4*x)*(BesselI(0,2*x) + BesselI(1,2*x)). - _Ilya Gutkovskiy_, Sep 20 2017
%t A005573 CoefficientList[Series[(Sqrt[(1-2x)/(1-6x)]-1)/(2x),{x,0,20}],x] (* _Harvey P. Dale_, Jun 24 2011 *)
%t A005573 a[n_] := 6^n Hypergeometric2F1[1/2, -n, 2, 2/3]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Apr 11 2017 *)
%o A005573 (PARI) my(x='x+O('x^30)); Vec((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)) \\ _G. C. Greubel_, May 02 2019
%o A005573 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1-2*x)/(1-6*x)) -1)/(2*x) )); // _G. C. Greubel_, May 02 2019
%o A005573 (Sage) ((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 02 2019
%K A005573 nonn,walk,easy,nice
%O A005573 0,2
%A A005573 _N. J. A. Sloane_
%E A005573 More terms from _Henry Bottomley_, Aug 23 2001