A005612 Number of Boolean functions of n variables that are variously called "unate cascades" or "1-decision list functions" or "read-once threshold functions".
2, 8, 64, 736, 10624, 183936, 3715072, 85755392, 2226939904, 64255903744, 2039436820480, 70614849282048, 2648768014680064, 106998205418995712, 4630973410260287488, 213794635951073787904, 10486975675879356104704
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Herman Jamke and Robert Israel, Table of n, a(n) for n = 1..350 (n = 1..22 from Herman Jamke)
- E. A. Bender and J. T. Butler, Asymptotic approximations for the number of fanout-free functions, IEEE Trans. Computers, 27 (1978), 1180-1183. (Annotated scanned copy)
- Aniruddha Biswas and Palash Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
- J. T. Butler, Letter to N. J. A. Sloane, Dec. 1978.
- Thomas Eiter, Toshihide Ibaraki and Kazuhisa Makino, Decision lists and related Boolean functions, Theoretical Computer Science 270 (2002), 493-524.
- A. S. Jarraha, B. Raposab and R. Laubenbachera, Nested canalyzing, unate cascade and polynomial functions, Physica D: Nonlinear Phenomena Volume 233, Issue 2, 15 September 2007, 167-174.
- T. Sasao and K. Kinoshita, On the Number of Fanout-Free Functions and Unate Cascade Functions, IEEE Transactions on Computers, Volume C-28, Issue 1 (1979), 66-72.
- Index entries for sequences related to Boolean functions
Crossrefs
Programs
-
Maple
egf:= (2-4*x)/(2-exp(2*x))+2*x-2: S:=series(egf,x,31): seq(j! *coeff(S,x,j), j=1..30); # Robert Israel, Jul 07 2015
-
Mathematica
p[0] = 1; p[n_] := p[n] = Sum[Binomial[n, k]*p[n-k], {k, 1, n}]; a[n_] := a[n] = 2^(n+1)*(p[n] - n*p[n-1]); a[1] = 2; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Aug 01 2011, after formula *)
-
PARI
a(n)=if(n<0, 0, n!*polcoeff(subst((2-4*y)/(2-exp(2*y))+2*y-2, y, x+x*O(x^n)), n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Formula
When n > 1, the number is 2^{n+1}(P_n-nP_{n-1}), where P_n is the number of weak orders (preferential arrangements), sequence A000670. For example, when n=4 we have 736 = 32 times (75 - 4*13).
Bender and Butler give the e.g.f. 2(x+e^{-2x}-1)/(1-2e^{-2x}), which can easily be simplified to (2-4x)/(2-e^(2x))+2x-2.
a(n) ~ n! * (1 - log(2)) * 2^n / (log(2))^(n+1). - Vaclav Kotesovec, Nov 27 2017
Extensions
Better description, comments, formulas and a new reference from Don Knuth, Sep 22 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Comments