cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005612 Number of Boolean functions of n variables that are variously called "unate cascades" or "1-decision list functions" or "read-once threshold functions".

Original entry on oeis.org

2, 8, 64, 736, 10624, 183936, 3715072, 85755392, 2226939904, 64255903744, 2039436820480, 70614849282048, 2648768014680064, 106998205418995712, 4630973410260287488, 213794635951073787904, 10486975675879356104704
Offset: 1

Views

Author

Keywords

Comments

Several other characterizations are given in the paper by Eitel et al.
These functions are the Boolean functions with the nice property that all of their projections are "canalizing" or "single-faced": that is, f is constant on half of the n-cube and on the other half it recursively satisfies the same constraint.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also sequence A005840, which is A005612 divided by 2^n. These are the monotone functions of the kind enumerated in the present sequence.

Programs

  • Maple
    egf:= (2-4*x)/(2-exp(2*x))+2*x-2:
    S:=series(egf,x,31):
    seq(j! *coeff(S,x,j), j=1..30); # Robert Israel, Jul 07 2015
  • Mathematica
    p[0] = 1; p[n_] := p[n] = Sum[Binomial[n, k]*p[n-k], {k, 1, n}]; a[n_] := a[n] = 2^(n+1)*(p[n] - n*p[n-1]); a[1] = 2; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Aug 01 2011, after formula *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff(subst((2-4*y)/(2-exp(2*y))+2*y-2, y, x+x*O(x^n)), n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

Formula

When n > 1, the number is 2^{n+1}(P_n-nP_{n-1}), where P_n is the number of weak orders (preferential arrangements), sequence A000670. For example, when n=4 we have 736 = 32 times (75 - 4*13).
Bender and Butler give the e.g.f. 2(x+e^{-2x}-1)/(1-2e^{-2x}), which can easily be simplified to (2-4x)/(2-e^(2x))+2x-2.
a(n) ~ n! * (1 - log(2)) * 2^n / (log(2))^(n+1). - Vaclav Kotesovec, Nov 27 2017

Extensions

Better description, comments, formulas and a new reference from Don Knuth, Sep 22 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008