cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005628 Number of chiral planted trees with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 20, 60, 176, 510, 1484, 4314, 12624, 37126, 109864, 326958, 978528, 2943384, 8895792, 27001378, 82281216, 251636434, 772101086, 2376186784, 7333094178, 22688117658, 70360646672, 218678194238, 681016789056
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:p[0]:=1: for n from 0 to 50 do p[n+1]:=sum(s[k]*p[n-2*k],k=0..floor(n/2)) od:seq(s[n]-p[n],n=0..37); # here s[n]=A000625 and p[n]=A005627(n)
  • Mathematica
    nmax = 28;
    s[0] = s[1] = 1; s[_] = 0;
    Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
    p[0] = 1;
    Do[p[n+1] = Sum[s[k]*p[n-2*k], {k, 0, Floor[n/2]}], {n, 0, nmax}];
    a[n_] := s[n] - p[n];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)

Formula

a(n) = A000625(n)-A005627(n) (given as g(n)=s(n)-p(n) on p. 357 of the Robinson et al. paper). - Emeric Deutsch, May 16 2004

Extensions

More terms from Emeric Deutsch, May 16 2004

A005629 Number of achiral trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 14, 21, 40, 61, 118, 186, 355, 567, 1081, 1755, 3325, 5454, 10306, 17070, 32136, 53628, 100704, 169175, 316874, 535267, 1000524, 1698322, 3168500, 5400908, 10059823, 17211368, 32010736, 54947147, 102059572, 175702378
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od: p[0]:=1: for n from 0 to 50 do > p[n+1]:=sum(s[k]*p[n-2*k],k=0..floor(n/2)) od:seq(p[j],j=0..45): P:=proc(n) if floor(n)=n then p[n] else 0 fi end:S:=proc(n) if floor(n)=n then s[n] else 0 fi end:t:=n->(P(n)+S(n/2)+S((n-1)/4))/2: seq(t(n),n=1..40); # here s[n]=A000625(n), p[n]=A005627(n). - Emeric Deutsch, Nov 21 2004
  • Mathematica
    nmax = 37;
    s[0] = s[1] = 1; s[_] = 0;
    Do[s[n + 1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n - j - k], {k, 0, n - j}], {j, 1, n}])/n, {n, 1, nmax}];
    p[0] = 1;
    Do[p[n + 1] = Sum[s[k]*p[n - 2 k], {k, 0, Floor[n/2]}]; a[n + 1] = (p[n + 1] + s[(n + 1)/2] + s[n/4])/2, {n, 0, nmax}];
    a[n_] := s[n] - p[n];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)

Formula

a(n+1) = (p(n+1)+s((n+1)/2)+s(n/4))/2, where p(n)=A005627(n) and s(n)=A000625(n) (eq. (23) in the Robinson et al. reference). - Emeric Deutsch, Nov 21 2004

Extensions

Corrected and extended by Emeric Deutsch, Nov 21 2004
Showing 1-2 of 2 results.