A005628 Number of chiral planted trees with n nodes.
0, 0, 0, 0, 2, 6, 20, 60, 176, 510, 1484, 4314, 12624, 37126, 109864, 326958, 978528, 2943384, 8895792, 27001378, 82281216, 251636434, 772101086, 2376186784, 7333094178, 22688117658, 70360646672, 218678194238, 681016789056
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Programs
-
Maple
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k],k=0..n-j),j=1..n))/n od:p[0]:=1: for n from 0 to 50 do p[n+1]:=sum(s[k]*p[n-2*k],k=0..floor(n/2)) od:seq(s[n]-p[n],n=0..37); # here s[n]=A000625 and p[n]=A005627(n)
-
Mathematica
nmax = 28; s[0] = s[1] = 1; s[_] = 0; Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}]; p[0] = 1; Do[p[n+1] = Sum[s[k]*p[n-2*k], {k, 0, Floor[n/2]}], {n, 0, nmax}]; a[n_] := s[n] - p[n]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
Formula
a(n) = A000625(n)-A005627(n) (given as g(n)=s(n)-p(n) on p. 357 of the Robinson et al. paper). - Emeric Deutsch, May 16 2004
Extensions
More terms from Emeric Deutsch, May 16 2004