A005631 Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
1, 2, 6, 18, 60, 200, 760, 2888, 11856, 48672, 215904, 957728, 4506304, 21203072, 105494400, 524880000, 2737670400, 14279148032, 77836363264, 424289980928, 2405307227136, 13635728197632, 80188215392256, 471566299547648, 2867649768509440, 17438513317683200
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence psi(2k+1).]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
Programs
-
Maple
For Maple program see A005635.
-
Mathematica
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]]; a[n_] := B[n + 1]*B[n + 2]/2; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code for A123071 *)
Extensions
More terms from N. J. A. Sloane, Sep 28 2006