cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005632 Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).

Original entry on oeis.org

0, 0, 5, 22, 258, 1628, 18052, 145976, 1837272, 18407664, 265312848, 3184567136, 52020223648, 728304073664, 13317701313600, 213083801827200, 4314950946864000, 77669134543011584, 1725980887361498368, 34519618313219995136, 835374767116711506432, 18378244896208168541184
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    For Maple program see A005635.
  • Mathematica
    c[n_] := Module[{k}, If[Mod[n, 2]==0, Return[0]]; k = (n-1)/2; If[Mod[k, 2] == 0, Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*(((k+1)/2)!)^2]]];
    d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
    B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n - 2)*B[n - 4]];
    S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
    Q[n_] := Module[{m}, If[Mod[n, 8] != 1, Return[0]]; m = (n-1)/8; ((2*m)!)^2 /(m!)^2];
    a[n_] := (c[2n+1] - S[2n+1] - Q[2n+1])/4;
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)

Extensions

More terms from N. J. A. Sloane, Sep 28 2006