cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005633 Bishops on an n X n board (see Robinson paper for details).

Original entry on oeis.org

0, 1, 0, 2, 2, 8, 14, 36, 112, 216, 928, 1440, 8616, 11520, 87864, 100800, 997952, 1008000, 12427904, 10886400, 169435936, 130636800, 2501216992, 1676505600, 39837528576, 23471078400, 679494214656, 348713164800, 12370158205568, 5579410636800, 239109033342848
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(n).]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    For Maple program see A005635.
  • Mathematica
    d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
    M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
    B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
    S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
    a[n_] := (M[n] - S[n])/2;
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)

Extensions

More terms from N. J. A. Sloane, Sep 28 2006