A005634 Bishops on an n X n board (see Robinson paper for details).
0, 0, 1, 4, 28, 85, 630, 3096, 23220, 123952, 1036080, 7230828, 66349440, 500721252, 5080269600, 45925520096, 508031496000, 4919774752448, 59256847036800, 656763354386032, 8532986691801600, 100525956801641104, 1405335512577427200, 18431883446961030912
Offset: 2
Keywords
References
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence epsilon(n) page 212.]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
Programs
-
Maple
For Maple program see A005635.
-
Mathematica
e[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[(k!*(k + 2)/2)^2], Return[((k - 1)!*(k + 1)^2/2)^2]], k = (n - 1)/2; If[Mod[k, 2] == 0, Return[((k!)^2/12)*(3*k^3 + 16*k^2 + 18*k + 8)], Return[((k - 1)!*(k + 1)!/12)*(3*k^3 + 13*k^2 - k - 3)]]]]; c[n_] := Module[{k}, If[Mod[n, 2]==0, Return[0]]; k = (n-1)/2; If[Mod[k, 2] == 0, Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*(((k+1)/2)!)^2]]]; d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]]; B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]]; S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]]; M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]]; a[n_] := e[n]/8 - c[n]/8 + S[n]/4 - M[n]/4; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
Extensions
More terms from N. J. A. Sloane, Sep 28 2006
Comments