cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

This page as a plain text file.
%I A005638 M1656 #53 Feb 16 2025 08:32:29
%S A005638 1,0,1,2,6,21,94,540,4207,42110,516344,7373924,118573592,2103205738,
%T A005638 40634185402,847871397424,18987149095005,454032821688754,
%U A005638 11544329612485981,310964453836198311,8845303172513781271
%N A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.
%C A005638 Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.
%D A005638 R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
%D A005638 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005638 G. Brinkmann, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199610)23:2&lt;139::AID-JGT5&gt;3.0.CO;2-U">Fast generation of cubic graphs</a>, Journal of Graph Theory, 23(2):139-149, 1996.
%H A005638 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/A051031">Not-necessarily connected regular graphs</a>
%H A005638 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>
%H A005638 R. W. Robinson, <a href="/A005636/a005636.pdf">Cubic graphs (notes)</a>
%H A005638 Robinson, R. W.; Wormald, N. C., <a href="http://dx.doi.org/10.1002/jgt.3190070412">Numbers of cubic graphs</a>, J. Graph Theory 7 (1983), no. 4, 463-467.
%H A005638 Peter Steinbach, <a href="/A000088/a000088_17.pdf">Field Guide to Simple Graphs, Volume 1</a>, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
%H A005638 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicGraph.html">Cubic Graph</a>
%H A005638 Gal Weitz, Lirandë Pira, Chris Ferrie, and Joshua Combes, <a href="https://arxiv.org/abs/2308.14981">Sub-universal variational circuits for combinatorial optimization problems</a>, arXiv:2308.14981 [quant-ph], 2023.
%F A005638 a(n) = A002851(n) + A165653(n).
%F A005638 This sequence is the Euler transformation of A002851.
%Y A005638 Cf. A000421.
%Y A005638 Row sums of A275744.
%Y A005638 3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
%Y A005638 Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
%Y A005638 Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
%Y A005638 Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).
%K A005638 nonn,nice
%O A005638 0,4
%A A005638 _N. J. A. Sloane_
%E A005638 More terms from Ronald C. Read.
%E A005638 Comment, formulas, and (most) crossrefs by _Jason Kimberley_, 2009 and 2012