cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005645 Number of sensed 3-connected planar maps with n edges.

This page as a plain text file.
%I A005645 M0599 #33 Mar 31 2021 04:55:47
%S A005645 1,0,1,2,3,4,15,32,89,266,797,2496,8012,26028,85888,286608,965216,
%T A005645 3278776,11221548,38665192,134050521,467382224,1638080277,5768886048,
%U A005645 20407622631,72494277840,258527335373,925322077852,3323258053528,11973883092034,43273374700200,156836969693756,569967330200576,2076647113454878,7584534277720818,27764845224462192,101862027752012402,374484866509396780,1379489908513460150
%N A005645 Number of sensed 3-connected planar maps with n edges.
%D A005645 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005645 N. J. A. Sloane, <a href="/A005645/b005645.txt">Table of n, a(n) for n = 6..50</a>
%H A005645 T. R. S. Walsh, <a href="/A007401/a007401.pdf">Number of sensed planar maps with n edges and m vertices</a>
%H A005645 T. R. S. Walsh, <a href="https://doi.org/10.1016/0095-8956(82)90074-0">Counting nonisomorphic three-connected planar maps</a>, J. Combin. Theory Ser. B 32 (1982), no. 1, 33-44.
%F A005645 a(n) = Sum_{k=4..n-2} A239893(k, n+2-k). - _Andrew Howroyd_, Mar 27 2021
%Y A005645 Cf. A002840 (unsensed), A239893.
%K A005645 nonn
%O A005645 6,4
%A A005645 _N. J. A. Sloane_
%E A005645 More terms and b-file added by _N. J. A. Sloane_, May 08 2012