cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005653 Lexicographically least increasing sequence, starting with 2, such that the sum of two distinct terms of the sequence is never a Fibonacci number.

This page as a plain text file.
%I A005653 M0965 #54 Aug 06 2024 05:26:50
%S A005653 2,4,5,7,10,12,13,15,18,20,23,25,26,28,31,33,34,36,38,39,41,44,46,47,
%T A005653 49,52,54,57,59,60,62,65,67,68,70,72,73,75,78,80,81,83,86,88,89,91,93,
%U A005653 94,96,99,101,102,104,107,109,112,114,115,117,120,122,123,125,127,128
%N A005653 Lexicographically least increasing sequence, starting with 2, such that the sum of two distinct terms of the sequence is never a Fibonacci number.
%C A005653 The Chow-Long paper gives a connection with continued fractions, as well as generalizations and other references for this and related sequences.
%C A005653 Positions of 0's in {A078588(n) : n > 0}. - _Clark Kimberling_ and _Jianing Song_, Sep 10 2019
%C A005653 Also positive integers k such that {k*r} < 1/2, where r = golden ratio = (1 + sqrt(5))/2 and { } = fractional part. - _Clark Kimberling_ and _Jianing Song_, Sep 12 2019
%C A005653 Jon E. Schoenfield conjectured, and Jeffrey Shallit proved (using the Walnut theorem prover) the characterization in the title. - _Jeffrey Shallit_, Nov 19 2023
%D A005653 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005653 T. D. Noe, <a href="/A005653/b005653.txt">Table of n, a(n) for n = 1..1000</a>
%H A005653 K. Alladi et al., <a href="https://doi.org/10.1016/0012-365X(78)90053-5">On additive partitions of integers</a>, Discrete Math., 22 (1978), 201-211.
%H A005653 T. Y. Chow and C. D. Long, <a href="https://web.archive.org/web/20170706084609/http://www-math.mit.edu/~tchow/add.pdf">Additive partitions and continued fractions</a>, Ramanujan J., 3 (1999), 55-72 [set alpha=(1+sqrt(5))/2 in Theorem 2 to get A005652 and A005653]. See also <a href="https://citeseerx.ist.psu.edu/pdf/5d7edc98fb80e240f9fd90c199d5c4ada36856e7">on ResearchGate</a>.
%H A005653 Primoz Pirnat, <a href="/A005653/a005653.txt">Mathematica program</a>
%F A005653 The set of all n such that the integer multiple of (1+sqrt(5))/2 nearest n is less than n (Chow-Long).
%F A005653 Numbers n such that 2{n*phi}={2n*phi}, where { } denotes fractional part. - _Clark Kimberling_, Jan 01 2007
%F A005653 Positive integers such that A078588(n) = 0. - _Clark Kimberling_ and _Jianing Song_, Sep 10 2019
%t A005653 f[n_] := Block[{k = Floor[n/GoldenRatio]}, If[n - k*GoldenRatio > (k + 1)*GoldenRatio - n, 1, 0]]; Select[ Range[130], f[ # ] == 0 &]
%t A005653 r = (1 + Sqrt[5])/2; z = 300;
%t A005653 t = Table[Floor[2 n*r] - 2 Floor[n*r], {n, 1, z}] (* {A078588(n) : n > 0} *)
%t A005653 Flatten[Position[t, 0]] (* this sequence *)
%t A005653 Flatten[Position[t, 1]] (* A005652 *)
%t A005653 (* _Clark Kimberling_ and _Jianing Song_, Sep 10 2019 *)
%t A005653 r = GoldenRatio;
%t A005653 t = Table[If[FractionalPart[n*r] < 1/2, 0, 1 ], {n, 1, 120}] (* {A078588(n) : n > 0} *)
%t A005653 Flatten[Position[t, 0]] (* this sequence *)
%t A005653 Flatten[Position[t, 1]] (* A005652 *)
%t A005653 (* _Clark Kimberling_ and _Jianing Song_, Sep 12 2019 *)
%Y A005653 Complement of A005652. See A078588 for further comments.
%K A005653 nonn,easy
%O A005653 1,1
%A A005653 _Simon Plouffe_ and _N. J. A. Sloane_
%E A005653 Extended by _Robert G. Wilson v_, Dec 02 2002
%E A005653 Definition clarified by _Jeffrey Shallit_, Nov 19 2023