This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005663 M0883 #38 Jul 02 2025 16:01:54 %S A005663 1,2,3,8,19,65,84,485,1054,24727,50508,125743,176251,301994,16785921, %T A005663 17087915,85137581,272500658,357638239,630138897,9809721694, %U A005663 10439860591,103768467013,217976794617,1193652440098,8573543875303 %N A005663 Numerators of convergents to log_2(3) = log(3)/log(2). %D A005663 R. K. Guy, personal communication. %D A005663 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005663 T. D. Noe, <a href="/A005663/b005663.txt">Table of n, a(n) for n=0..200</a> %H A005663 R. E. Crandall, <a href="http://dx.doi.org/10.1090/S0025-5718-1978-0480321-3">On the 3x+1 problem</a>, Math. Comp., 32 (1978) 1281-1292. %H A005663 E. G. Dunne, <a href="/DUNNE/TEMPERAMENT2.html">Pianos and Continued Fractions</a> %H A005663 E. G. Dunne, <a href="/A005663/a005663.html.txt">Pianos and Continued Fractions</a> %H A005663 R. K. Guy, <a href="/A005663/a005663.pdf">Letter to N. J. A. Sloane, 1977</a> %H A005663 Eric Weisstein's World of Music, <a href="http://www.ericweisstein.com/encyclopedias/music/CommaofPythagoras.html">Comma of Pythagoras</a> %e A005663 log_2(3) = 1.5849625007211561814537389439... %t A005663 Numerator[Convergents[Log[2,3],30]] (* _Harvey P. Dale_, Sep 10 2015 *) %o A005663 (PARI) a(n) = component(component(contfracpnqn(contfrac(log(3)/log(2), n)), 1), 1) \\ _Michel Marcus_, May 20 2013 %Y A005663 Cf. A005664, A028507, A020857. %K A005663 frac,easy,nonn %O A005663 0,2 %A A005663 _N. J. A. Sloane_ %E A005663 More terms from _James Sellers_, Sep 16 2000