cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005665 Minimal number of moves for the cyclic variant of the Towers of Hanoi for 3 pegs and n disks, with the final peg one step away.

This page as a plain text file.
%I A005665 M3857 #100 Nov 01 2024 20:33:12
%S A005665 0,1,5,15,43,119,327,895,2447,6687,18271,49919,136383,372607,1017983,
%T A005665 2781183,7598335,20759039,56714751,154947583,423324671,1156544511,
%U A005665 3159738367,8632565759,23584608255,64434348031,176037912575,480944521215,1313964867583,3589818777599,9807567290367
%N A005665 Minimal number of moves for the cyclic variant of the Towers of Hanoi for 3 pegs and n disks, with the final peg one step away.
%C A005665 Original name was: Tower of Hanoi with 3 pegs and cyclic moves only (clockwise). - _Jianing Song_, Nov 01 2024
%C A005665 This looks like sequence A(0,1;2,2;3) of the family of sequences [a,b:c,d:k] considered by _Gary Detlefs_, and treated as A(a,b;c,d;k) in the W. Lang link given below. - _Wolfdieter Lang_, Oct 18 2010
%D A005665 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 18.
%D A005665 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005665 Vincenzo Librandi, <a href="/A005665/b005665.txt">Table of n, a(n) for n = 0..1000</a>
%H A005665 S. Alejandre, <a href="https://web.archive.org/web/20040314132214/http://www.rialto.k12.ca.us:80/frisbie/mathfair/hanoilegend.html">Legend of Towers of Hanoi</a>
%H A005665 J.-P. Allouche, <a href="http://dx.doi.org/10.1016/0304-3975(94)90064-7">Note on the cyclic towers of Hanoi</a>, Theoret. Comput. Sci., 123 (1994), 3-7.
%H A005665 M. D. Atkinson, <a href="http://www.cs.otago.ac.nz/staffpriv/mike/Papers/Hanoi/CyclicHanoi.pdf">The Cyclic Towers of Hanoi</a>, Info. Proc. Letters, 13 (1981), 118-119.
%H A005665 R. K. Guy, <a href="/A005665/a005665_1.pdf">Letter to N. J. A. Sloane, 1976</a>
%H A005665 A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, <a href="http://dx.doi.org/10.1007/978-3-0348-0237-6">The Tower of Hanoi - Myths and Maths</a>, Birkhäuser 2013. See page 249. <a href="http://tohbook.info">Book's website</a>
%H A005665 Wolfdieter Lang, <a href="/A005665/a005665.pdf">Notes on certain inhomogeneous three term recurrences.</a>
%H A005665 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A005665 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A005665 D. G. Poole, <a href="http://www.jstor.org/stable/2690991">The towers and triangles of Professor Claus (or, Pascal knows Hanoi)</a>, Math. Mag., 67 (1994), 323-344.
%H A005665 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-2).
%H A005665 <a href="/index/To#Hanoi">Index entries for sequences related to Towers of Hanoi</a>
%F A005665 G.f.: x*(1+2*x)/((1-x)*(1-2*x-2*x^2)). - _Simon Plouffe_ in his 1992 dissertation
%F A005665 From _Paul Barry_, Sep 05 2006: (Start)
%F A005665 a(n) = ((sqrt(3)+1)^(n+1) + (sqrt(3)-1)^(n+1)*(-1)^n)*sqrt(3)/6 - 1. (End)
%F A005665 a(n) = 2*a(n-1) + 2*a(n-2) + 3. - _John W. Layman_
%F A005665 a(n) = (1/(2*s3))*((1+s3)^(n+1) - (1-s3)^(n+1)) - 1 where s3 = sqrt(3).
%F A005665 a(n) = 3*a(n-1) - 2*a(n-3), a(0)=0, a(1)=1, a(2)=5 (from the given o.g.f.). Observed by _Gary Detlefs_. See the W. Lang link. - _Wolfdieter Lang_, Oct 18 2010
%F A005665 a(n) = 2*A005666(n-1) + 1. - _Michel Marcus_, Nov 02 2012
%F A005665 a(n) = Sum_{k=1..n} A026150(k). - _Ivan N. Ianakiev_, Nov 22 2019
%F A005665 E.g.f.: (1/3)*exp(x)*(-3 + 3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - _Stefano Spezia_, Nov 22 2019
%t A005665 a[n_] := Simplify[ ((1 + Sqrt[3])^(n+1) - (1 - Sqrt[3])^(n+1))*Sqrt[3]/6 - 1]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Dec 14 2011, after _Paul Barry_ *)
%t A005665 LinearRecurrence[{3,0,-2},{0,1,5},40] (* _Harvey P. Dale_, Mar 30 2015 *)
%o A005665 (Magma) [Floor(((Sqrt(3)+1)^(n+1)+(Sqrt(3)-1)^(n+1)*(-1)^n)*Sqrt(3)/6-1): n in [0..30] ]; // _Vincenzo Librandi_, Aug 19 2011
%o A005665 (Haskell)
%o A005665 a005665 n = a005665_list !! (n-1)
%o A005665 a005665_list = 0 : 1 : 5 : zipWith (-)
%o A005665                (map (* 3) $ drop 2 a005665_list) (map (* 2) a005665_list)
%o A005665 -- _Reinhard Zumkeller_, May 01 2013
%o A005665 (PARI) a(n)=([0,1,0; 0,0,1; -2,0,3]^n*[0;1;5])[1,1] \\ _Charles R Greathouse IV_, Jun 15 2015
%Y A005665 Cf. A005666, A007664, A007665, A026150 (first differences).
%Y A005665 Cf. A338024, A292764, A338089 (4 pegs).
%K A005665 nonn,nice,easy
%O A005665 0,3
%A A005665 _N. J. A. Sloane_
%E A005665 More terms from _Vincenzo Librandi_, Aug 19 2011
%E A005665 Name clarified by _Paul Zimmermann_, Feb 21 2018
%E A005665 New name based on the name of A338024, A292764, and A338089 by _Jianing Song_, Nov 01 2024