This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005669 M1193 #92 Sep 10 2024 03:50:41 %S A005669 1,2,4,9,24,30,99,154,189,217,1183,1831,2225,3385,14357,30802,31545, %T A005669 40933,103520,104071,149689,325852,1094421,1319945,2850174,6957876, %U A005669 10539432,10655462,20684332,23163298,64955634,72507380,112228683,182837804,203615628,486570087 %N A005669 Indices of primes where largest gap occurs. %C A005669 Conjecture: log a(n) ~ n/2. That is, record prime gaps occur about twice as often as records in an i.i.d. random sequence of comparable length (see arXiv:1709.05508 for a heuristic explanation). - _Alexei Kourbatov_, Mar 28 2018 %D A005669 H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384. %D A005669 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005669 John W. Nicholson, <a href="/A005669/b005669.txt">Table of n, a(n) for n = 1..82</a> (first 77 terms from Charles R Greathouse IV) %H A005669 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/gaps20.htm">The Top-20 Prime Gaps</a>. %H A005669 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/megagap2.htm">New record prime gap</a>. %H A005669 Jens Kruse Andersen, <a href="http://primerecords.dk/primegaps/maximal.htm">Maximal gaps</a>. %H A005669 R. K. Guy, <a href="/A005667/a005667.pdf">Letter to N. J. A. Sloane, 1987</a>. %H A005669 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013. %H A005669 Alexei Kourbatov, <a href="https://arxiv.org/abs/1709.05508">On the nth record gap between primes in an arithmetic progression</a>, arXiv:1709.05508 [math.NT], 2017; <a href="https://doi.org/10.12988/imf.2018.712103">Int. Math. Forum, 13 (2018), 65-78</a>. %H A005669 Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019. %H A005669 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html">First occurrence prime gaps</a>. [For local copy see A000101] %H A005669 Matt Visser, <a href="https://arxiv.org/abs/1904.00499">Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81st maximal prime gap</a>, arXiv:1904.00499 [math.NT], 2019. %H A005669 Robert G. Wilson v, <a href="/A005250/a005250.pdf">Notes (no date)</a>. %H A005669 J. Young and A. Potler, <a href="http://dx.doi.org/10.1090/S0025-5718-1989-0947470-1">First occurrence prime gaps</a>, Math. Comp., 52 (1989), 221-224. %H A005669 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a> %F A005669 a(n) = A000720(A002386(n)). %F A005669 a(n) = A107578(n) - 1. - _Jens Kruse Andersen_, Oct 19 2010 %t A005669 f[n_] := Block[{d, i, m = 0}, Reap@ For[i = 1, i <= n, i++, d = Prime[i + 1] - Prime@ i; If[d > m, m = d; Sow@ i, False]] // Flatten // Rest]; f@ 1000000 (* _Michael De Vlieger_, Mar 24 2015 *) %Y A005669 Cf. A000101, A002386, A005250. %K A005669 nonn %O A005669 1,2 %A A005669 _N. J. A. Sloane_