A170823 An infinite word on the alphabet 1, 2, 3 by Bollobas.
1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1
Offset: 0
Keywords
References
- B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, pp. 226-228.
Links
- B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge 2006, scan of pages 226, 227 annotated by _N. J. A. Sloane_, Jul 31 2020.
- Boris Zolotov, Another Solution to the Thue Problem of Non-Repeating Words, arXiv:1505.00019 [math.CO], 2015. (Section 5 morphism 1, then section 6.)
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Maple
a:=[1,2,3,2,1]; b:=[2,3,1,3,2]; c:=[3,1,2,1,3]; S:=[1]; for m from 1 to 6 do S:=subs({1=a[],2=b[],3=c[]},S); od: S;
-
PARI
my(table=[0,1,2,1,0]); a(n) = my(v=digits(n,5)); sum(i=1,#v,table[v[i]+1]) %3+1; \\ Kevin Ryde, Jul 31 2020
Comments