This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005689 M1042 #45 Jul 08 2025 16:33:47 %S A005689 1,2,4,7,11,16,22,30,42,61,91,137,205,303,443,644,936,1365,1999,2936, %T A005689 4316,6340,9300,13625,19949,29209,42785,62701,91917,134758,197548, %U A005689 289547 %N A005689 Number of Twopins positions. %D A005689 R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. %D A005689 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005689 R. Austin and R. K. Guy, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/16-1/austin.pdf">Binary sequences without isolated ones</a>, Fib. Quart., 16 (1978), 84-86. %H A005689 R. K. Guy, <a href="/A005251/a005251_1.pdf">Anyone for Twopins?</a>, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission] %H A005689 V. C. Harris and C. C. Styles, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/2-4/harris.pdf">A generalization of Fibonacci numbers</a>, Fib. Quart. 2 (1964) 277-289, sequence u(n,4,2). %H A005689 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A005689 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A005689 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,1). %F A005689 G.f.: x^6*(1+x^2+x^3+x^4+x^5)/(1-2x+x^2-x^6). - _Ralf Stephan_, Apr 20 2004 %F A005689 Sum{k=0..floor(n/6), binomial(n-4k, 2k)} is 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, ... - _Paul Barry_, Sep 16 2004 %p A005689 A005689:=-(1+z**2+z**3+z**4+z**5)/(z**3+z-1)/(z**3-z+1); [Conjectured by _Simon Plouffe_ in his 1992 dissertation.] %t A005689 LinearRecurrence[{2,-1,0,0,0,1},{1,2,4,7,11,16},40] (* _Harvey P. Dale_, Feb 02 2019 *) %K A005689 nonn %O A005689 6,2 %A A005689 _N. J. A. Sloane_