cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005766 a(n) = cost of minimal multiplication-cost addition chain for n.

Original entry on oeis.org

0, 1, 3, 5, 9, 12, 18, 21, 29, 34, 44, 48, 60, 67, 81, 85, 101, 110, 128, 134, 154, 165, 187, 192, 216, 229, 255, 263, 291, 306, 336, 341, 373, 390, 424, 434, 470, 489, 527, 534, 574, 595, 637, 649, 693, 716, 762, 768, 816, 841, 891, 905, 957, 984, 1038
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A089265.

Programs

  • Mathematica
    a[n_] := Sum[v = IntegerExponent[k, 2]; v + k/2^v - 1, {k, 1, n}];
    Array[a, 55] (* Jean-François Alcover, Feb 28 2019 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n^2/4,a((n-1)/2)+(n-1)*(n+3)/4))
    
  • PARI
    a(n)=sum(k=1,n,valuation(k,2)+k/2^valuation(k,2)-1)

Formula

a(2n)=a(n)+n^2, a(2n+1)=a(n)+n(n+2). - Ralf Stephan, May 04 2003
G.f.: 1/(1-x) * sum(k>=0, x^2^(k+1)(1+2x^2^k-x^2^(k+1))/(1-x^2^(k+1))^2). - Ralf Stephan, Jul 27 2003
a(n) = sum(k=1, n, A007814(n) + 2*A025480(n-1)). - Ralf Stephan, Oct 30 2003

Extensions

More terms from Ralf Stephan, May 04 2003