cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005769 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex is strictly to the right of the rightmost top vertex.

This page as a plain text file.
%I A005769 M4911 #26 Jan 08 2024 04:34:48
%S A005769 1,13,110,758,4617,25895,136949,693369,3395324,16197548,75675657,
%T A005769 347624505,1574756959,7051383905,31266981002,137492793602,
%U A005769 600295660953,2604690331787,11240698270037,48279130088017,206486210282936,879807455701208,3736101981855305
%N A005769 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex is strictly to the right of the rightmost top vertex.
%D A005769 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005769 M.-P. Delest and G. Viennot, <a href="https://doi.org/10.1016/0304-3975(84)90116-6">Algebraic languages and polyominoes enumeration</a>, Theoretical Computer Sci., 34 (1984), 169-206.
%F A005769 a(n) = A005436(n) - A005768(n) - A005770(n).
%F A005769 G.f.: x^4 * (2 - 20*x + 75*x^2 - 127*x^3 + 95*x^4 - 27*x^5 + 4*x^6) / ((1 - 2*x^(1/2))^2 * (1 + 2*x^(1/2))^2 * (1 - 2*x) * (1 + x^(1/2) - x)^2 * (1 - x^(1/2) - x)^2) - 2*x^4 * (1 - 4*x)^(-3/2). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
%t A005769 DeleteCases[CoefficientList[Series[x^4*(2 - 20 x + 75 x^2 - 127 x^3 + 95 x^4 - 27 x^5 + 4 x^6)/((1 - 2 x^(1/2))^2*(1 + 2 x^(1/2))^2*(1 - 2 x) (1 + x^(1/2) - x)^2*(1 - x^(1/2) - x)^2) - 2 x^4*(1 - 4 x)^(-3/2), {x, 0, 27}], x] , 0] (* _Michael De Vlieger_, Aug 26 2016 *)
%K A005769 nonn,easy
%O A005769 6,2
%A A005769 _Simon Plouffe_
%E A005769 Better description from Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
%E A005769 More terms from _Sean A. Irvine_, Aug 26 2016