cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005770 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex and rightmost top vertex have the same x-coordinate.

This page as a plain text file.
%I A005770 M4638 #44 Jun 04 2024 17:08:00
%S A005770 1,9,55,286,1362,6143,26729,113471,473471,1951612,7974660,32384127,
%T A005770 130926391,527657073,2121795391,8518575466,34162154550,136893468863,
%U A005770 548253828965,2194897467395,8784784672511,35153438973304,140653028240520,562719731644671
%N A005770 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex and rightmost top vertex have the same x-coordinate.
%D A005770 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005770 M.-P. Delest and G. Viennot, <a href="https://doi.org/10.1016/0304-3975(84)90116-6">Algebraic languages and polyominoes enumeration</a>, Theoretical Computer Sci., 34 (1984), 169-206.
%H A005770 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A005770 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H A005770 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (12,-55,120,-125,54,-8).
%F A005770 a(n) = A005436(n) - A005768(n) - A005769(n).
%F A005770 G.f.: x^5*(1-3*x+2*x^2+x^3)/((1 - 3*x + x^2)^2*(1 - 6*x + 8*x^2)). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
%F A005770 a(n) = 12*a(n-1) - 55*a(n-2) + 120*a(n-3) - 125*a(n-4) + 54*a(n-5) - 8*a(n-6) for n > 8. - _Stefano Spezia_, Jun 04 2024
%p A005770 A005770:=(1-3*z+2*z**2+z**3)/(4*z-1)/(2*z-1)/(z**2-3*z+1)**2; # conjectured by _Simon Plouffe_ in his 1992 dissertation
%t A005770 CoefficientList[Series[x^5*(1-3*x+2*x^2+x^3)/((1 - 3*x + x^2)^2*(1 - 6*x + 8*x^2)),{x,0,28}],x] (* _Stefano Spezia_, Jun 04 2024 *)
%Y A005770 Cf. A005436, A005768, A005769.
%K A005770 nonn,easy
%O A005770 5,2
%A A005770 _Simon Plouffe_, _N. J. A. Sloane_
%E A005770 Better description from Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
%E A005770 More terms from _Sean A. Irvine_, Aug 26 2016