This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005808 M5032 #51 Apr 25 2025 05:18:27 %S A005808 17,19,73,139,907,1907,2029,4801,5153,10867,20161,293831,1868983 %N A005808 Numbers k such that (11^k - 1)/10 is prime. %D A005808 J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements. %D A005808 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236. %D A005808 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005808 P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a> %H A005808 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002. %H A005808 H. Dubner, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1185243-9">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. %H A005808 H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A005808 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a> %H A005808 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=%2811%5Ex-1%29%2F10&action=Search">PRP Records</a>. %H A005808 S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a> %H A005808 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit.</a> %H A005808 <a href="/index/Pri#primepop">Index to primes in various ranges</a>, form ((k+1)^n-1)/k %t A005808 lst={};Do[If[PrimeQ[(11^n-1)/10], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *) %o A005808 (PARI) is(n)=ispseudoprime((11^n-1)/10) \\ _Charles R Greathouse IV_, Apr 29 2015 %K A005808 hard,more,nonn %O A005808 1,1 %A A005808 _N. J. A. Sloane_ %E A005808 a(11) = 20161 was found by Kamil Duszenko on Aug 15 2003. - _Alexander Adamchuk_, Feb 11 2007 %E A005808 a(12) = 293831 corresponds to a probable prime discovered by _Paul Bourdelais_ with PFGW v3.3.1, Mar 08 2010 %E A005808 a(13) by _Paul Bourdelais_, Jun 01 2021