A005812 Weight of balanced ternary representation of n.
0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Daniel Forgues, Table of n, a(n) for n = 0..100000
- P. Flajolet and Lyle Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158.
- Michael Gilleland, Some Self-Similar Integer Sequences
Programs
-
Lisp
(defun btw (n) (if (= n 0) 0 (multiple-value-bind (q r) (round n 3) (+ (abs r) (btw q)))))
-
Mathematica
a[n_] := With[{q=Round[n/3]}, Abs[n-3q]+a[q]]; a[0]=0; Table[a[n], {n, 0, 105}](* Jean-François Alcover, Nov 25 2011, after Pari *)
-
PARI
a(n)=local(q); if(n<=0,0,q=round(n/3); abs(n-3*q)+a(q))
-
Python
def a(n): s=0 x=0 while n>0: x=n%3 n//=3 if x==2: x=-1 n+=1 if x!=0: s+=1 return s print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017
Formula
a(3n)=a(n), a(3n+1)=a(n)+1, a(9n+2)=a(n)+2, a(9n+5)=a(3n+2)+1, a(9n+8)=a(3n+2).
a(n) = Sum_{k>0} floor(|2*sin(n*Pi/3^k)|). - Toshitaka Suzuki, Sep 10 2006
Extensions
Additional terms from Allan C. Wechsler
Comments