This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005866 M0226 #61 Jun 17 2025 10:26:23 %S A005866 1,1,1,1,1,1,1,2,2,2,2,4,4,8,16,32,36,64,128,256,512,1024,2048,4096 %N A005866 The coding-theoretic function A(n,8). %C A005866 Since A(n,7) = A(n+1,8), A(n,7) gives essentially the same sequence. %C A005866 The next term, A(25,8), is known to be at least 4096 and at most 5421. - _Moshe Milshtein_, Dec 03 2018 %D A005866 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 248. %D A005866 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 674. %D A005866 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005866 A. E. Brouwer, <a href="http://www.win.tue.nl/~aeb/codes/binary-1.html">Small binary codes: Table of general binary codes</a>, personal web page. %H A005866 A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, <a href="http://dx.doi.org/10.1109/18.59932">New table of constant weight codes</a>, IEEE Trans. Info. Theory 36 (1990), 1334-1380. %H A005866 Patric R. J. Östergård, <a href="https://doi.org/10.1109/TIT.2011.2144955">On the Size of Optimal Three-Error-Correcting Binary Codes of Length 16</a>, IEEE Transactions on Information Theory, Volume 57, Issue 10, Oct. 2011. %H A005866 N. J. A. Sloane and D. S. Whitehead, <a href="http://neilsloane.com/doc/whitehead.html">A New Family of Single-Error Correcting Codes</a> [Shows a(18) >= 36.] %H A005866 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Error-CorrectingCode.html">Error-Correcting Code.</a> %H A005866 <a href="/index/Aa#And">Index entries for sequences related to A(n,d)</a> %Y A005866 Cf. A005864: A(n,4) and A(n,3), A005865: A(n,6) and A(n,5). %Y A005866 Cf. A005851: A(n,8,5), A005852: A(n,8,6), A005853: A(n,8,7), A004043: A(n,8,8). %K A005866 nonn,hard,nice,more %O A005866 1,8 %A A005866 _N. J. A. Sloane_ %E A005866 a(18)-a(24) from _Moshe Milshtein_, Dec 03 2018