cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005878 Theta series of cubic lattice with respect to deep hole.

This page as a plain text file.
%I A005878 M4496 #32 Dec 01 2017 03:01:55
%S A005878 8,24,24,32,48,24,48,72,24,56,72,48,72,72,48,48,120,72,56,96,24,120,
%T A005878 120,48,96,96,72,96,120,48,104,168,96,48,120,72,96,192,72,144,96,72,
%U A005878 144,120,96,104,192,72,120,192,48,144,216,48,96,120,144,192,168,120,96,216,72
%N A005878 Theta series of cubic lattice with respect to deep hole.
%C A005878 Number of ways of writing 8*n+3 as the sum of three odd squares. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
%C A005878 Expansion of Jacobi theta constant theta_2^3. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
%D A005878 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
%D A005878 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005878 G. C. Greubel, <a href="/A005878/b005878.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..99 from Herman Jamke (hermanjamke(AT)fastmail.fm))
%H A005878 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/cubicP.html">Home page for this lattice</a>
%F A005878 G.f.: Form (Sum_{n=-inf..inf} q^((2n+1)^2))^3, then divide by q^3 and set q = x^(1/8).
%F A005878 a(n) = 8 * A008443(n).
%t A005878 QP = QPochhammer; CoefficientList[(2 QP[q^2]^2/QP[q])^3 + O[q]^63, q] (* _Jean-François Alcover_, Jul 04 2017 *)
%o A005878 (PARI) {a(n)=if(n<0, 0, 8*polcoeff( sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n))} {a(n)=local(A); if(n<0, 0, A=x*O(x^n); 8*polcoeff( (eta(x^2+A)^2/eta(x+A))^3, n))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
%Y A005878 Equals 8 times A008443. Cf. A085121.
%K A005878 nonn,easy
%O A005878 0,1
%A A005878 _N. J. A. Sloane_
%E A005878 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008