This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005879 M4509 #53 Feb 16 2025 08:32:29 %S A005879 8,32,48,64,104,96,112,192,144,160,256,192,248,320,240,256,384,384, %T A005879 304,448,336,352,624,384,456,576,432,576,640,480,496,832,672,544,768, %U A005879 576,592,992,768,640,968,672,864,960,720,896,1024,960,784,1248,816,832,1536 %N A005879 Theta series of D_4 lattice with respect to deep hole. %C A005879 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A005879 The D_4 lattice is the set of all integer quadruples [a, b, c, d] where a + b + c + d is even. The deep holes are quadruples [a, b, c, d] where each coordinate is half an odd integer and where a + b + c + d is even. - _Michael Somos_, May 23 2012 %D A005879 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118. %D A005879 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005879 T. D. Noe, <a href="/A005879/b005879.txt">Table of n, a(n) for n = 0..10000</a> %H A005879 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D4.html">Home page for this lattice</a> %H A005879 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A005879 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %H A005879 <a href="/index/Da#D4">Index entries for sequences related to D_4 lattice</a> %F A005879 Expansion of Jacobi theta_2(q)^4/(2q) in powers of q^2. - _Michael Somos_, Apr 11 2004 %F A005879 Expansion of q^(-1/2) * 8 * (eta(q^2)^2 / eta(q))^4 in powers of q. - _Michael Somos_, Apr 11 2004 %F A005879 Expansion of 8 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - _Michael Somos_, May 23 2012 %F A005879 Expansion of (phi(q)^4 - phi(-q)^4) / (2 * q) in powers of q^2. - _Michael Somos_, May 23 2012 %F A005879 G.f.: 8 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - _Michael Somos_, Apr 11 2004 %F A005879 a(n) = 8 * A008438(n) = 4 * A005880(n) = A000118(2*n + 1) = - A096727(2*n + 1). - _Michael Somos_, Nov 01 2006 %e A005879 8 + 32*x + 48*x^2 + 64*x^3 + 104*x^4 + 96*x^5 + 112*x^6 + 192*x^7 + ... %e A005879 8*q + 32*q^3 + 48*q^5 + 64*q^7 + 104*q^9 + 96*q^11 + 112*q^13 + ... %e A005879 . %e A005879 For n = 2 the objects counted are the ways to represent the integer 5 = (2*n+1) as a sum of 4 squares, 0 and negative numbers allowed. %e A005879 [-2,-1,0,0], [-2,0,-1,0], [-2,0,0,-1], [-2,0,0,1], [-2,0,1,0], [-2,1,0,0], %e A005879 [-1,-2,0,0], [-1,0,-2,0], [-1,0,0,-2], [-1,0,0,2], [-1,0,2,0], [-1,2,0,0], %e A005879 [0,-2,-1,0], [0,-2,0,-1], [0,-2,0,1], [0,-2,1,0], [0,-1,-2,0], [0,-1,0,-2], %e A005879 [0,-1,0,2], [0,-1,2,0], [0,0,-2,-1], [0,0,-2,1], [0,0,-1,-2], [0,0,-1,2], %e A005879 [0,0,1,-2], [0,0,1,2], [0,0,2,-1], [0,0,2,1], [0,1,-2,0], [0,1,0,-2], %e A005879 [0,1,0,2], [0,1,2,0], [0,2,-1,0], [0,2,0,-1], [0,2,0,1], [0,2,1,0], %e A005879 [1,-2,0,0], [1,0,-2,0], [1,0,0,-2], [1,0,0,2], [1,0,2,0], [1,2,0,0], %e A005879 [2,-1,0,0], [2,0,-1,0], [2,0,0,-1], [2,0,0,1], [2,0,1,0], [2,1,0,0]. %e A005879 - _Peter Luschny_, Nov 03 2015 %p A005879 S:= series(JacobiTheta2(0,q)^4/(2*q), q, 202): %p A005879 seq(coeff(S,q,2*j),j=0..100); # _Robert Israel_, Nov 03 2015 %t A005879 (* a(n) gives the number of ways to represent the integer 2n+1 as a sum of 4 squares *) a[n_] := SquaresR[4, 2n+1]; Table[a[n], {n, 0, 52}] (* _Jean-François Alcover_, Nov 03 2015 *) %t A005879 terms = 53; QP = QPochhammer; s = 8 QP[q^2]^8/QP[q]^4 + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 07 2017, after _Michael Somos_ *) %o A005879 (PARI) {a(n) = if( n<0, 0, 8 * sigma(2*n + 1))} /* _Michael Somos_, Apr 11 2004 */ %o A005879 (PARI) q='q+O('q^66); Vec(8*(eta(q^2)^2/eta(q))^4) \\ _Joerg Arndt_, Nov 03 2015 %Y A005879 Cf. A000118, A005880, A008438, A096727. %K A005879 nonn,easy,nice %O A005879 0,1 %A A005879 _N. J. A. Sloane_