cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005881 Theta series of planar hexagonal lattice (A2) with respect to edge.

This page as a plain text file.
%I A005881 M0187 #33 Aug 12 2017 03:35:44
%S A005881 2,2,0,4,2,0,4,0,0,4,4,0,2,2,0,4,0,0,4,4,0,4,0,0,6,0,0,0,4,0,4,4,0,4,
%T A005881 0,0,4,2,0,4,2,0,0,0,0,8,4,0,4,0,0,4,0,0,4,4,0,0,4,0,2,0,0,4,4,0,8,0,
%U A005881 0,4,0,0,0,6,0,4,0,0,4,0,0,4,0,0,6,4,0,4,0,0,4,4,0,0,4,0,4,0,0,4,4,0,0,0,0
%N A005881 Theta series of planar hexagonal lattice (A2) with respect to edge.
%C A005881 Also number of ways of writing n as the sum of a triangular number and three times a triangular number.
%C A005881 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%C A005881 Given g.f. A(x), then q^(1/2)*A(q) is denoted phi_1(z) where q=exp(Pi*i*z) in Conway and Sloane.
%C A005881 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%D A005881 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005881 Antti Karttunen, <a href="/A005881/b005881.txt">Table of n, a(n) for n = 0..10000</a>
%H A005881 J. H. Conway and N. J. A. Sloane, <a href="http://dx.doi.org/10.1007/978-1-4757-2016-7">Sphere Packings, Lattices and Groups</a>, Springer-Verlag, p. 103. see Equ. (13).
%H A005881 M. D. Hirschhorn, <a href="http://dx.doi.org/10.1016/j.disc.2004.08.045">The number of representations of a number by various forms</a>, Discrete Mathematics 298 (2005), 205-211.
%H A005881 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%H A005881 N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), 1653-1657.
%H A005881 N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%F A005881 Expansion of q^(-1) * (a(q) - a(q^4)) / 3 in powers of q^2 where a() is a cubic AGM theta function. - _Michael Somos_, Nov 05 2006
%F A005881 a(n) = 2*A033762(n).
%p A005881 d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,3,2*n+1)-d(2,3,2*n+1)),n=0..120)];
%t A005881 a[n_] := 2*DivisorSum[2n+1, KroneckerSymbol[-12, #]*Mod[(2n+1)/#, 2]& ]; Table[a[n], {n, 0, 105}] (* _Jean-François Alcover_, Dec 02 2015, adapted from PARI *)
%o A005881 (PARI) {a(n) = if( n<0, 0, n = 2*n + 1; 2 * sumdiv(n, d, kronecker( -12, d) * (n/d%2)))}; /* _Michael Somos_, Nov 05 2006 */
%o A005881 (PARI) {a(n) = if( n<0, 0, n = 8*n + 4; 2 * sum(j=1, sqrtint(n\3), (j%2) * issquare(n - 3*j^2)))}; /* _Michael Somos_, Nov 05 2006 */
%Y A005881 Cf. A033762.
%K A005881 nonn
%O A005881 0,1
%A A005881 _N. J. A. Sloane_