cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005882 Theta series of planar hexagonal lattice (A2) with respect to deep hole.

This page as a plain text file.
%I A005882 M2281 #55 Feb 16 2025 08:32:29
%S A005882 3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12,0,6,3,
%T A005882 6,0,6,6,0,0,3,6,6,0,12,0,6,0,0,6,6,0,6,0,6,0,9,6,6,0,6,0,0,0,6,9,6,0,
%U A005882 0,6,6,0,12,0,6,0,6,0,0,0,6,6,12,0,0,3,12,0,0,6,6,0,6,0,6,0,3,6,0,0,12
%N A005882 Theta series of planar hexagonal lattice (A2) with respect to deep hole.
%C A005882 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%C A005882 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C A005882 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A005882 On page 111 of Conway and Sloane is "If the origin is moved to a deep hole the theta series is Theta_{hex+[1]}(z) = theta_2(z) psi_6(3z) + theta_3(z) psi_3(3z) = 3 q^{1/3} + 3 q^{4/3} + 6 q^{7/3} + 6 q^{13/3} + ... (63)" where the psi_k() for integer k is defined on page 103 equation (11) as psi_k(z) = e^{Pi i/z^2} theta_3(Pi z/k | z) = Sum_{m in Z} q^{(m + 1/k)^2}. - _Michael Somos_, Sep 10 2018
%D A005882 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
%D A005882 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005882 Seiichi Manyama, <a href="/A005882/b005882.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H A005882 J. M. Borwein and P. B. Borwein, <a href="http://dx.doi.org/10.1090/S0002-9947-1991-1010408-0">A cubic counterpart of Jacobi's identity and the AGM</a>, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.
%H A005882 Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1505.07229v3">The zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
%H A005882 Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv:1610.07793 [math.NT], 2016.
%H A005882 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%H A005882 N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%H A005882 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A005882 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A005882 Expansion of q^(-1/3) * 3 * eta(q^3)^3 / eta(q) in powers of q.
%F A005882 Expansion of q^(-1/3) * c(q) in powers of q where c(q) is the third cubic AGM theta function.
%F A005882 Given g.f. A(x), then B(x) = x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 2*u*w^2 - u^2*w. - _Michael Somos_, Aug 15 2006
%F A005882 G.f.: 3 Product_{k>0} (1-q^(3k))^3/(1-q^k).
%F A005882 G.f.: Sum_{u,v in Z} x^(u*u + u*v + v*v + u + v). - _Michael Somos_, Jul 19 2014
%F A005882 a(n) = 3 * A033687(n). a(n) = A113062(3*n + 1) = A033685(3*n + 1).
%F A005882 Expansion of 2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - _Michael Somos_, Sep 07 2018
%F A005882 Sum_{k=1..n} a(k) ~ 2*Pi*n/sqrt(3). - _Vaclav Kotesovec_, Dec 17 2022
%e A005882 G.f. = 3 + 3*x + 6*x^2 + 6*x^4 + 3*x^5 + 6*x^6 + 3*x^8 + 6*x^9 + 6*x^10 + ...
%e A005882 G.f. = 3*q + 3*q^4 + 6*q^7 + 6*q^13 + 3*q^16 + 6*q^19 + 3*q^25 + 6*q^28 + ...
%t A005882 a[ n_] := SeriesCoefficient[ 3 QPochhammer[ q^3]^3 / QPochhammer[ q], {q, 0, n}]; (* _Michael Somos_, Jul 19 2014 *)
%o A005882 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^3 + A)^3 / eta(x + A), n))}; /* _Michael Somos_, Aug 15 2006 */
%o A005882 (Magma) Basis( ModularForms( Gamma1(9), 1), 302)[2] * 3; /* _Michael Somos_, Jul 19 2014 */
%Y A005882 Essentially same as A033685 and A033687.
%Y A005882 Cf. A113062, A273845.
%K A005882 nonn
%O A005882 0,1
%A A005882 _N. J. A. Sloane_