cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005883 Theta series of square lattice with respect to deep hole.

This page as a plain text file.
%I A005883 M3319 #34 Feb 16 2025 08:32:29
%S A005883 4,8,4,8,8,0,12,8,0,8,8,8,4,8,0,8,16,0,8,0,4,16,8,0,8,8,0,8,8,8,4,16,
%T A005883 0,0,8,0,16,8,8,8,0,0,12,8,0,8,16,0,8,8,0,16,0,0,0,16,12,8,8,0,8,8,0,
%U A005883 0,8,8,16,8,0,8,8,0,12,8,0,0,16,0,8,8,0,24,0,8,8,0,0,8,8,0,4,16,8,8,16,0,0
%N A005883 Theta series of square lattice with respect to deep hole.
%C A005883 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A005883 In [Jacobi 1829] on page 105 is equation 18: "2 k K / Pi = 4 sqrt(q) + 8 sqrt(q^5) + 4 sqrt(q^9) [...]". - _Michael Somos_, Sep 09 2012
%D A005883 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
%D A005883 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A005883 C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829.
%H A005883 G. C. Greubel, <a href="/A005883/b005883.txt">Table of n, a(n) for n = 0..1000</a>
%H A005883 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A005883 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A005883 Expansion of Jacobi theta constant q^(-1/2) * theta_2(q)^2 in powers of q^2. - _Michael Somos_, Oct 31 2006
%F A005883 G.f.: 4 * (Product_{k>0} (1 - x^k) * (1 + x^(2*k))^2)^2. - _Michael Somos_, Oct 31 2006
%F A005883 From _Michael Somos_, Sep 09 2012: (Start)
%F A005883 Expansion of 4 * psi(x)^2 in powers of x where psi() is a Ramanujan theta function.
%F A005883 Expansion of q^(-1) * (1/2) * (1 - k') * K / (Pi/2) in powers of q^4 where k', K are Jacobi elliptic functions.
%F A005883 Expansion of q^(-1/2) * k * K / (Pi/2) in powers of q^2 where k, K are Jacobi elliptic functions.
%F A005883 Expansion of q^(-1/4) * 2 * k^(1/2) * K / (Pi/2) in powers of q where k, K are Jacobi elliptic functions.
%F A005883 Expansion of 4 * q^(-1/4) * eta(q^2)^4 / eta(q)^2 in powers of q.
%F A005883 a(n) = 4 * A008441(n). (End)
%e A005883 4 + 8*x + 4*x^2 + 8*x^3 + 8*x^4 + 12*x^6 + 8*x^7 + 8*x^9 + 8*x^10 + 8*x^11 + ...
%e A005883 4*q + 8*q^3 + 4*q^5 + 8*q^7 + 8*q^9 + 12*q^13 + 8*q^15 + 8*q^19 + 8*q^21 + ...
%e A005883 Theta = 4*q^(1/2) + 8*q^(5/2) + 4*q^(9/2) + 8*q^(13/2) + 8*q^(17/2) + ...
%t A005883 a[0] = 4; a[n_] := 4*DivisorSum[4n+1, (-1)^Quotient[#, 2]&]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Nov 04 2015, translated from PARI *)
%t A005883 s = 4*(QPochhammer[q^2]^4/QPochhammer[q]^2)+O[q]^100; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 09 2015 *)
%o A005883 (PARI) {a(n) = if( n<0, 0, n = 4*n + 1; 4 * sumdiv(n, d, (-1)^(d\2)))} /* _Michael Somos_, Oct 31 2006 */
%Y A005883 Cf. A008441.
%K A005883 nonn
%O A005883 0,1
%A A005883 _N. J. A. Sloane_