cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005886 Theta series of f.c.c. lattice with respect to tetrahedral hole.

This page as a plain text file.
%I A005886 M3429 #42 Feb 21 2018 07:18:49
%S A005886 4,12,12,16,24,12,24,36,12,28,36,24,36,36,24,24,60,36,28,48,12,60,60,
%T A005886 24,48,48,36,48,60,24,52,84,48,24,60,36,48,96,36,72,48,36,72,60,48,52,
%U A005886 96,36,60,96,24,72,108,24,48,60,72,96,84,60,48,108,36,52,72,60,108,108,36,48,108
%N A005886 Theta series of f.c.c. lattice with respect to tetrahedral hole.
%C A005886 Empirically, the number of integral quadruples with sum = 1, sum-of-squares = 2n-1. - _Colin Mallows_, Dec 31 2016
%D A005886 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005886 G. C. Greubel, <a href="/A005886/b005886.txt">Table of n, a(n) for n = 0..1000</a>
%H A005886 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D3.html">Home page for this lattice</a>
%H A005886 N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%H A005886 <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%F A005886 a(n) = 1/2 * A005878(n) = 2 * A005869(n) = 4 * A008443(n). - _Michael Somos_, May 31 2012
%e A005886 4 + 12*x + 12*x^2 + 16*x^3 + 24*x^4 + 12*x^5 + 24*x^6 + 36*x^7 + 12*x^8 + ...
%t A005886 QP = QPochhammer; CoefficientList[4(QP[q^2]^2/QP[q])^3 + O[q]^50, q] (* _Jean-François Alcover_, Jul 04 2017, after _Michael Somos_ *)
%Y A005886 Cf. A005869, A005878, A008443. Partial sums is A121054. Cf also A278081-A278086.
%K A005886 nonn,easy
%O A005886 0,1
%A A005886 _N. J. A. Sloane_
%E A005886 Terms a(50) onward added by _G. C. Greubel_, Feb 20 2018