cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005887 Theta series of f.c.c. lattice with respect to octahedral hole.

This page as a plain text file.
%I A005887 M4070 #33 Feb 16 2025 08:32:29
%S A005887 6,8,24,0,30,24,24,0,48,24,48,0,30,32,72,0,48,48,24,0,96,24,72,0,54,
%T A005887 48,72,0,48,72,72,0,96,24,96,0,48,56,96,0,102,72,48,0,144,48,48,0,48,
%U A005887 72,168,0,96,72,72,0,96,48,120,0,78,48,144,0,144,120,48,0,96,72,96,0,96,56,168
%N A005887 Theta series of f.c.c. lattice with respect to octahedral hole.
%C A005887 Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
%D A005887 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005887 N. J. A. Sloane, <a href="/A005887/b005887.txt">Table of n, a(n) for n = 0..9999</a>
%H A005887 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D3.html">Home page for this lattice</a>
%H A005887 N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%H A005887 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A005887 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H A005887 <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%F A005887 Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - _Michael Somos_, Aug 17 2009
%F A005887 A005875(2*n + 1) = a(n). - _Michael Somos_, Aug 17 2009
%e A005887 6 + 8*x + 24*x^2 + 30*x^4 + 24*x^5 + 24*x^6 + 48*x^8 + 24*x^9 + 48*x^
%e A005887 10 + ...
%e A005887 6*q + 8*q^3 + 24*q^5 + 30*q^9 + 24*q^11 + 24*q^13 + 48*q^17 + 24*q^19 + ...
%p A005887 maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd): th4:=series(subs(q=-q,th3),q,maxd):
%p A005887 t1:=series((th3^3-th4^3)/(2*q),q,maxd): t1:=series(subs(q=sqrt(q),t1),q,floor(maxd/2)): t2:=seriestolist(t1): for n from 1 to nops(t2) do lprint(n-1, t2[n]); od:
%t A005887 s = (EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2q) + O[q]^200; CoefficientList[s, q^2] (* _Jean-François Alcover_, Sep 19 2016 *)
%o A005887 (PARI) {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n))} /* _Michael Somos_, Aug 17 2009 */
%Y A005887 Cf. A005875.
%K A005887 nonn
%O A005887 0,1
%A A005887 _N. J. A. Sloane_