cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005902 Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.

This page as a plain text file.
%I A005902 M4898 #105 Sep 08 2022 08:44:34
%S A005902 1,13,55,147,309,561,923,1415,2057,2869,3871,5083,6525,8217,10179,
%T A005902 12431,14993,17885,21127,24739,28741,33153,37995,43287,49049,55301,
%U A005902 62063,69355,77197,85609,94611,104223,114465,125357,136919,149171,162133,175825,190267,205479
%N A005902 Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
%C A005902 Called "magic numbers" in some chemical contexts.
%C A005902 Partial sums of A005901(n). - _Lekraj Beedassy_, Oct 30 2003
%C A005902 Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - _Gary W. Adamson_, Aug 01 2008
%C A005902 Crystal ball sequence for A_3 lattice. - _Michael Somos_, Jun 03 2012
%D A005902 H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
%D A005902 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005902 T. D. Noe, <a href="/A005902/b005902.txt">Table of n, a(n) for n = 0..1000</a>
%H A005902 S. Bjornholm, <a href="http://dx.doi.org/10.1080/00107519008213781">Clusters, condensed matter in embryonic form</a>, Contemp. Phys. 31 1990 pp. 309-324.
%H A005902 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H A005902 Nicolas Gastineau, Olivier Togni, <a href="https://arxiv.org/abs/1806.08136">Coloring of the d-th power of the face-centered cubic grid</a>, arXiv:1806.08136 [cs.DM], 2018.
%H A005902 D. R. Herrick, <a href="https://chemistry.uoregon.edu/profile/dherrick/">Home Page</a> (displays these numbers as sizes of clusters in chemistry)
%H A005902 Xiaogang Liang, Ilyar Hamid, and Haiming Duan, <a href="https://doi.org/10.1063/1.4954741">Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals</a>,>, AIP Advances 6, 065017 (2016).
%H A005902 T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (11).
%H A005902 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A005902 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A005902 B. K. Teo and N. J. A. Sloane, <a href="http://dx.doi.org/10.1021/ic00220a025">Magic numbers in polygonal and polyhedral clusters</a>, Inorgan. Chem. 24 (1985), 4545-4558.
%H A005902 K. Urner, <a href="http://www.4dsolutions.net/ocn/sphpack2.html">Cuboctahedral Sphere Packing</a>
%H A005902 <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>
%H A005902 <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%H A005902 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A005902 a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
%F A005902 For n > 0, n*a(n) = (Sum_{i=0..n-1} a(i)) + 2*A005891(n)*A000217(n). - _Bruno Berselli_, Feb 02 2011
%F A005902 a(-1 - n) = -a(n). - _Michael Somos_, Jun 03 2012
%F A005902 From _Indranil Ghosh_, Apr 08 2017: (Start)
%F A005902 G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
%F A005902 E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
%F A005902 (End)
%F A005902 a(n) = A100171(n+1) - A008778(n-1) = A100174(n+1) - A000290(n) = A005917(n+1) - A006331(n) = A051673(n+1) + A000578(n). - _Bruce J. Nicholson_, Jul 05 2018
%e A005902 a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - _Gary W. Adamson_, Aug 01 2008
%e A005902 G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
%p A005902 A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
%p A005902 A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # _Simon Plouffe_ in his 1992 dissertation
%t A005902 f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* _Robert G. Wilson v_, Feb 02 2011 *)
%t A005902 LinearRecurrence[{4,-6,4,-1},{1,13,55,147},50] (* _Harvey P. Dale_, Oct 08 2015 *)
%t A005902 CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* _Indranil Ghosh_, Apr 08 2017 *)
%o A005902 (PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* _Michael Somos_, Jun 03 2012 */
%o A005902 (PARI) x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ _Indranil Ghosh_, Apr 08 2017
%o A005902 (Magma) [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // _G. C. Greubel_, Dec 01 2017
%o A005902 (Python)
%o A005902 def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
%o A005902 print([a(n) for n in range(40)]) # _Michael S. Branicky_, Jan 13 2021
%Y A005902 (1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
%Y A005902 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%Y A005902 Cf. A100171, A100174, A051673.
%K A005902 nonn,easy,nice
%O A005902 0,2
%A A005902 _N. J. A. Sloane_