This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005925 M3184 #28 Dec 18 2021 20:41:29 %S A005925 1,0,0,4,0,0,0,0,12,0,0,12,0,0,0,0,6,0,0,12,0,0,0,0,24,0,0,16,0,0,0,0, %T A005925 12,0,0,24,0,0,0,0,24,0,0,12,0,0,0,0,8,0,0,24,0,0,0,0,48,0,0,36,0,0,0, %U A005925 0,6,0,0,12 %N A005925 Theta series of diamond. %C A005925 a(n) > 0 iff n is in A047470. - _Robert Israel_, Jul 06 2016 %D A005925 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005925 Robert Israel, <a href="/A005925/b005925.txt">Table of n, a(n) for n = 0..10000</a> %H A005925 J. H. Conway and N. J. A. Sloane, <a href="http://dx.doi.org/10.1007/978-1-4757-2016-7">Sphere Packings, Lattices and Groups</a>, Springer-Verlag, p. 120. %H A005925 G. L. Hall, <a href="http://dx.doi.org/10.1063/1.527833">Comment on the paper "Theta series and magic numbers for diamond and certain ionic crystal structures" [J. Math. Phys. 28, 1653 (1987)]</a>. Journal of Mathematical Physics; Sep. 1988, Vol. 29 Issue 9, pp. 2090-2092. - From _N. J. A. Sloane_, Dec 18 2012 %H A005925 N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), 1653-1657. %F A005925 (theta_2^3 + theta_3^3 + theta_4^3) / 2. %p A005925 S:= series((JacobiTheta2(0,z^4)^3 + JacobiTheta3(0,z^4)^3 + JacobiTheta4(0,z^4)^3)/2, z, 101): %p A005925 seq(coeff(S,z,j),j=0..100); # _Robert Israel_, Jul 06 2016 %t A005925 terms = 68; s = Simplify[Normal[(EllipticTheta[2, 0, z^4]^3 + EllipticTheta[3, 0, z^4]^3 + EllipticTheta[4, 0, z^4]^3)/2 + O[z]^terms], z > 0]; CoefficientList[s, z] (* _Jean-François Alcover_, Jul 07 2017 *) %Y A005925 Cf. A005926, A005927, A047470, A217512, A217513, A217514. %K A005925 nonn,nice %O A005925 0,4 %A A005925 _N. J. A. Sloane_