cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005926 Theta series of diamond with respect to midpoint of edge.

This page as a plain text file.
%I A005926 M0005 #34 May 17 2023 11:29:58
%S A005926 0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T A005926 0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U A005926 6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0
%N A005926 Theta series of diamond with respect to midpoint of edge.
%D A005926 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005926 Andy Huchala, <a href="/A005926/b005926.txt">Table of n, a(n) for n = 0..1600</a> (first 387 terms from Herman Jamke)
%H A005926 N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), 1653-1657.
%e A005926 G.f. = 2*q^(3/16) + 6*q^(19/16) + 12*q^(35/16) + 12*q^(51/16) + 6*q^(67/16) + 18*q^(83/16) + 18*q^(99/16) + ...
%t A005926 prec = 10;
%t A005926 eta[q_, a_] := Sum[q^((i + a)^2), {i, Range[-prec, prec]}];
%t A005926 t2[q_] := eta[q, 1/2];
%t A005926 t3[q_] := eta[q, 0];
%t A005926 T = Expand[t2[q^(1/2)]*(t2[q^2]*eta[q^4, 3/8] + t3[q^2]*eta[q^4, 1/8])] // PowerExpand;
%t A005926 A = Range[prec*16 + 1];
%t A005926 Do[A[[i + 1]] = Coefficient[T, q, i/16], {i, 1, prec*16}];
%t A005926 A[[1]] = 0; A  (* _Andy Huchala_, May 17 2023 *)
%Y A005926 Cf. A045840, A217513.
%K A005926 easy,nonn
%O A005926 0,4
%A A005926 _N. J. A. Sloane_
%E A005926 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008