This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005931 M5313 #21 Feb 16 2025 08:32:29 %S A005931 56,576,1512,4032,5544,12096,13664,24192,27216,44352,41832,72576, %T A005931 67536,100800,101304,145728,126504,205632,176456,249984,234360,326592, %U A005931 277200,423360,355320,479808,439992,608832,494928,749952,599760,806400,745416 %N A005931 Theta series of the coset of the E_7 lattice in its dual. %C A005931 Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). %D A005931 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125. Equation (113) %D A005931 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005931 G. C. Greubel, <a href="/A005931/b005931.txt">Table of n, a(n) for n = 0..10000</a> %H A005931 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A005931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A005931 Expansion of 56* psi(q^2)^3* phi(q)^4 +128* q* psi(q^2)^7 in powers of q where phi(),psi() are Ramanujan theta functions. - _Michael Somos_, Jun 11 2007 %e A005931 56*q^(3/2) + 576*q^(7/2) + 1512*q^(11/2) + 4032*q^(15/2) + 5544*q^(19/2) + ... %t A005931 terms = 33; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = 56*psi[q^2]^3 * phi[q]^4 + 128*q*psi[q^2]^7 + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 04 2017, after _Michael Somos_ *) %o A005931 (PARI) {a(n)= local(A, B); if(n<0, 0, n++; A= sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)); B= subst(A,x,-x); polcoeff( (A^4 -B^4)* (8*A^4 -B^4)/ 2/ sum(k=0, sqrtint( 4*n+1)\2, x^(k^2+k), x*O(x^n)), n))} /* _Michael Somos_, Jun 11 2007*/ %K A005931 nonn %O A005931 0,1 %A A005931 _N. J. A. Sloane_