This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005945 M4966 #49 Sep 08 2022 08:44:34 %S A005945 0,1,15,60,154,315,561,910,1380,1989,2755,3696,4830,6175,7749,9570, %T A005945 11656,14025,16695,19684,23010,26691,30745,35190,40044,45325,51051, %U A005945 57240,63910,71079,78765,86986,95760,105105,115039,125580,136746 %N A005945 Number of n-step mappings with 4 inputs. %C A005945 a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1. %D A005945 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005945 Vincenzo Librandi, <a href="/A005945/b005945.txt">Table of n, a(n) for n = 0..1000</a> %H A005945 T. Hogg and B. A. Huberman, <a href="https://doi.org/10.1103/PhysRevA.32.2338">Attractors on finite sets: the dissipative dynamics of computing structures</a>, Phys. Review A 32 (1985), 2338-2346. %H A005945 T. Hogg and B. A. Huberman, <a href="/A000258/a000258.pdf">Attractors on finite sets: the dissipative dynamics of computing structures</a>, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy) %H A005945 B. A. Huberman, T. H. Hogg, & N. J. A. Sloane, <a href="/A005945/a005945.pdf">Correspondence, 1985</a> %H A005945 Pierpaolo Natalini, Paolo E. Ricci, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Ricci/ricci3.html">Integer Sequences Connected with Extensions of the Bell Polynomials</a>, Journal of Integer Sequences, 2017, Vol. 20, #17.10.2. %H A005945 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A005945 G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2. %F A005945 For n>0, a(n) = n*A000567(n) - A000217(n-1). - _Bruno Berselli_, Apr 25 2010; Feb 01 2011 %F A005945 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Vincenzo Librandi_, Jun 18 2012 %F A005945 a(n) = -A094952(-n) for all n in Z. - _Michael Somos_, Jan 23 2014 %e A005945 G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ... %t A005945 LinearRecurrence[{4,-6,4,-1},{0,1,15,60},50] (* _Vincenzo Librandi_, Jun 18 2012 *) %t A005945 a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* _Michael Somos_, Jun 10 2015 *) %o A005945 (PARI) {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* _Michael Somos_, Jan 23 2014 */ %o A005945 (Magma) I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // _Vincenzo Librandi_ Jun 18 2012 %Y A005945 Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005920, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. [_Bruno Berselli_, Apr 25 2010] %Y A005945 Cf. A094952. %K A005945 nonn,easy %O A005945 0,3 %A A005945 _N. J. A. Sloane_ %E A005945 Edited by _Michael Somos_, Oct 29 2002