This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005964 M2816 #50 Apr 08 2025 12:23:26 %S A005964 0,1,1,3,9,32,133,681,3893,24809,169206,1214462,9034509,69093299, %T A005964 539991437 %N A005964 Number of trivalent connected (or cubic) planar graphs with 2n nodes. %D A005964 A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92. %D A005964 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005964 Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri/">plantri and fullgen</a> programs for generation of certain types of planar graph. %H A005964 Gunnar Brinkmann and Brendan McKay, <a href="/A000103/a000103_1.pdf">plantri and fullgen</a> programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission] %H A005964 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976. %H A005964 Jan Goedgebeur and Patric R. J. Ostergard, <a href="https://arxiv.org/abs/2105.01363">Switching 3-Edge-Colorings of Cubic Graphs</a>, arXiv:2105:01363 [math.CO], May 2021. See Table 3. %H A005964 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>. %H A005964 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>. %H A005964 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicGraph.html">Cubic Graph</a>. %Y A005964 Cf. A058378, A000109, A002851, A204186. %K A005964 nonn,nice,hard %O A005964 1,4 %A A005964 _N. J. A. Sloane_ %E A005964 Extended by _Brendan McKay_ and _Gunnar Brinkmann_ using their program "plantri", Dec 19 2000