cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005985 Length of longest trail (i.e., path with all distinct edges) on the edges of an n-cube.

This page as a plain text file.
%I A005985 M3366 #49 Sep 08 2022 08:44:34
%S A005985 0,1,4,9,32,65,192,385,1024,2049,5120,10241,24576,49153,114688,229377,
%T A005985 524288,1048577,2359296,4718593,10485760,20971521,46137344,92274689,
%U A005985 201326592,402653185,872415232,1744830465,3758096384,7516192769,16106127360,32212254721
%N A005985 Length of longest trail (i.e., path with all distinct edges) on the edges of an n-cube.
%C A005985 Walk along edges of n-cube without walking along any edge twice; a(n) = number of edges in longest path.
%C A005985 For even n we can traverse all the edges, so a(n) = number of edges = n*2^(n-1). For n odd, every vertex has odd degree, so we need (# vertices)/2 = 2^(n-1) separate paths to cover them all; we will not be able to traverse more than n*2^(n-1) - (2^(n-1)-1) edges before Euler blocks the way. There is a recursive construction (temporarily lost) which achieves this bound.
%C A005985 Suppose n is odd. Delete all but one edge between {0,1}^(n-1) x {0} = A and {0,1}^(n-1) x {1} = B. Starting at the vertex v of A that has an edge to B, do an Euler tour of A coming back to v, then cross over to B and do an Euler tour of B.
%C A005985 This gives you a longest possible trail. - _Robert Israel_, Jun 02 2015
%D A005985 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005985 T. D. Noe, <a href="/A005985/b005985.txt">Table of n, a(n) for n=0..300</a>
%H A005985 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H A005985 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H A005985 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,5,-10,-4,8).
%F A005985 G.f.: -x*(1 + 2*x - 4*x^2 + 4*x^3) / ( (x - 1)*(2*x + 1)*(1 + x)*(-1 + 2*x)^2 ). - _Simon Plouffe_ in his 1992 dissertation.
%F A005985 a(n) = (2*n*2^n-(1-(-1)^n)*(2^n-2))/4. - _Giovanni Resta_, May 31 2015
%F A005985 a(n) = 2*a(n-1)+5*a(n-2)-10*a(n-3)-4*a(n-4)+8*a(n-5), n>5. - _Wesley Ivan Hurt_, May 31 2015
%e A005985 For n=3, let the vertices be labeled with Cartesian coordinates (0,0,0), (0,0,1), ..., (1,1,1). An example of a maximal path (of length 9) visits the ten vertices: (0,0,0), (1,0,0), (1,0,1), (1,1,1), (0,1,1), (0,0,1), (0,0,0), (0,1,0), (1,1,0), (1,0,0).
%p A005985 A005985:=n->(2*n*2^n-(1-(-1)^n)*(2^n-2))/4: seq(A005985(n), n=0..50); # _Wesley Ivan Hurt_, May 31 2015
%t A005985 Table[(2*n*2^n - (1 - (-1)^n)(2^n - 2))/4, {n, 0, 20}] (* _Giovanni Resta_, May 31 2015 *)
%t A005985 LinearRecurrence[{2,5,-10,-4,8},{0,1,4,9,32},40] (* _Harvey P. Dale_, Jun 11 2015 *)
%o A005985 (Magma) [(2*n*2^n-(1-(-1)^n)*(2^n-2))/4 : n in [0..50]]; // _Wesley Ivan Hurt_, May 31 2015
%o A005985 (PARI) a(n)=(2*n<<n - (1-(-1)^n)*(2^n-2))/4 \\ _Charles R Greathouse IV_, Jun 03 2015
%Y A005985 Cf. A018215 (bisection).
%K A005985 nonn,nice,easy
%O A005985 0,3
%A A005985 _Colin Mallows_
%E A005985 Revised by _Colin Mallows_, Jun 13 2005
%E A005985 More terms from _Erich Friedman_, Aug 08 2005