cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006005 The odd prime numbers together with 1.

This page as a plain text file.
%I A006005 #55 Apr 15 2019 16:35:13
%S A006005 1,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
%T A006005 97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,
%U A006005 181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271
%N A006005 The odd prime numbers together with 1.
%C A006005 The odd noncomposite numbers. Also odd primes at the beginning of the 20th century. - _Omar E. Pol_, Mar 19 2008
%C A006005 Indices at which records occur in A002322. - _Artur Jasinski_, Apr 05 2008
%C A006005 Odd numbers n such that their largest divisor <= sqrt(n) equals 1. (See A161344). - _Omar E. Pol_, Aug 03 2009
%C A006005 All k for which cos((k-1)!*Pi/k) is negative. - _Gerry Martens_, Jun 01 2018
%H A006005 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870 [alternative scanned copy].
%H A006005 S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
%F A006005 a(n) = A000040(n) - A000007(n) = A000040(n) - ((-1)^A000040(n)+1)/2. - _Juri-Stepan Gerasimov_, Oct 25 2009
%F A006005 a(n) = A175524(n) for n <= 30. - _Reinhard Zumkeller_, Jul 12 2011
%t A006005 a = {}; max = 0; Do[w = CarmichaelLambda[k]; If[w > max, AppendTo[a, k]; max = k], {k, 1, 200}]; a (* _Artur Jasinski_, Apr 05 2008 *)
%t A006005 Join[{1},Prime[Range[2,60]]] (* _Harvey P. Dale_, Apr 15 2019 *)
%o A006005 (PARI) prime(n)-(n==1) \\ _Charles R Greathouse IV_, Aug 26 2011
%Y A006005 Cf. A000040, A008578, A065091, A002322.
%K A006005 nonn,easy
%O A006005 1,2
%A A006005 _N. J. A. Sloane_