cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006028 Weight distribution of [ 128,99,8 ] 4th-order Reed-Muller code RM(4,7).

This page as a plain text file.
%I A006028 #13 Aug 12 2023 21:13:40
%S A006028 1,0,0,0,188976,0,148157184,5805342720,352501184760,14090340827136,
%T A006028 445990551166720,11148730324353024,224814298345622160,
%U A006028 3704888469231108096,50486579825291883008,574502111223143792640,5505259862572668584988
%N A006028 Weight distribution of [ 128,99,8 ] 4th-order Reed-Muller code RM(4,7).
%H A006028 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%H A006028 M. Terada, J. Asatani and T. Koumoto, <a href="http://isec.ec.okayama-u.ac.jp/home/kusaka/wd/index.html">Weight Distribution</a>
%e A006028 u^128 + 188976*u^120*v^8 + 148157184*u^116*v^12 + 5805342720*u^114*v^14 +
%e A006028 352501184760*u^112*v^16 + 14090340827136*u^110*v^18 + 445990551166720*u^108*v^20 +
%e A006028 11148730324353024*u^106*v^22 + 224814298345622160*u^104*v^24 +
%e A006028 3704888469231108096*u^102*v^26 + 50486579825291883008*u^100*v^28 +
%e A006028 574502111223143792640*u^98*v^30 + 5505259862572668584988*u^96*v^32 +
%e A006028 44748635843913605775360*u^94*v^34 + 310470295870406870385152*u^92*v^36 +
%e A006028 1848689416882328323358720*u^90*v^38 + 9492309127074743252712240*u^88*v^40 +
%e A006028 42202740208778987487756288*u^86*v^42 + 163056041735354833829648640*u^84*v^44 +
%e A006028 549191653630903808742490112*u^82*v^46 + 1616902022777436781296463560*u^80*v^48 +
%e A006028 4170947258549850556429074432*u^78*v^50 + 9445968792148616532912076032*u^76*v^52 +
%e A006028 18812726104570634921033072640*u^74*v^54 + 32995567020448757300816680976*u^72*v^56 +
%e A006028 51020368602507380313683656704*u^70*v^58 + 69612536825673328395392461824*u^68*v^60 +
%e A006028 83858994648178551820509904896*u^66*v^62 + 89224971989924438343276144710*u^64*v^64 +
%e A006028 83858994648178551820509904896*u^62*v^66 + 69612536825673328395392461824*u^60*v^68 +
%e A006028 51020368602507380313683656704*u^58*v^70 + 32995567020448757300816680976*u^56*v^72 +
%e A006028 18812726104570634921033072640*u^54*v^74 + 9445968792148616532912076032*u^52*v^76 +
%e A006028 4170947258549850556429074432*u^50*v^78 + 1616902022777436781296463560*u^48*v^80 +
%e A006028 549191653630903808742490112*u^46*v^82 + 163056041735354833829648640*u^44*v^84 +
%e A006028 42202740208778987487756288*u^42*v^86 + 9492309127074743252712240*u^40*v^88 +
%e A006028 1848689416882328323358720*u^38*v^90 + 310470295870406870385152*u^36*v^92 +
%e A006028 44748635843913605775360*u^34*v^94 + 5505259862572668584988*u^32*v^96 +
%e A006028 574502111223143792640*u^30*v^98 + 50486579825291883008*u^28*v^100 +
%e A006028 3704888469231108096*u^26*v^102 + 224814298345622160*u^24*v^104 +
%e A006028 11148730324353024*u^22*v^106 + 445990551166720*u^20*v^108 + 14090340827136*u^18*v^110 +
%e A006028 352501184760*u^16*v^112 + 5805342720*u^14*v^114 + 148157184*u^12*v^116 + 188976*u^8*v^120 + v^128.
%e A006028 i A_i
%e A006028 0 1
%e A006028 8 188976
%e A006028 12 148157184
%e A006028 14 5805342720
%e A006028 16 352501184760
%e A006028 18 14090340827136
%e A006028 20 445990551166720
%e A006028 22 11148730324353024
%e A006028 24 224814298345622160
%e A006028 26 3704888469231108096
%e A006028 28 50486579825291883008
%e A006028 30 574502111223143792640
%e A006028 32 5505259862572668584988
%e A006028 34 44748635843913605775360
%e A006028 36 310470295870406870385152
%e A006028 38 1848689416882328323358720
%e A006028 40 9492309127074743252712240
%e A006028 42 42202740208778987487756288
%e A006028 44 163056041735354833829648640
%e A006028 46 549191653630903808742490112
%e A006028 48 1616902022777436781296463560
%e A006028 50 4170947258549850556429074432
%e A006028 52 9445968792148616532912076032
%e A006028 54 18812726104570634921033072640
%e A006028 56 32995567020448757300816680976
%e A006028 58 51020368602507380313683656704
%e A006028 60 69612536825673328395392461824
%e A006028 62 83858994648178551820509904896
%e A006028 64 89224971989924438343276144710
%e A006028 66 83858994648178551820509904896
%e A006028 68 69612536825673328395392461824
%e A006028 70 51020368602507380313683656704
%e A006028 72 32995567020448757300816680976
%e A006028 74 18812726104570634921033072640
%e A006028 76 9445968792148616532912076032
%e A006028 78 4170947258549850556429074432
%e A006028 80 1616902022777436781296463560
%e A006028 82 549191653630903808742490112
%e A006028 84 163056041735354833829648640
%e A006028 86 42202740208778987487756288
%e A006028 88 9492309127074743252712240
%e A006028 90 1848689416882328323358720
%e A006028 92 310470295870406870385152
%e A006028 94 44748635843913605775360
%e A006028 96 5505259862572668584988
%e A006028 98 574502111223143792640
%e A006028 100 50486579825291883008
%e A006028 102 3704888469231108096
%e A006028 104 224814298345622160
%e A006028 106 11148730324353024
%e A006028 108 445990551166720
%e A006028 110 14090340827136
%e A006028 112 352501184760
%e A006028 114 5805342720
%e A006028 116 148157184
%e A006028 120 188976
%e A006028 128 1
%o A006028 (Magma) C:=ReedMullerCode(4,7); w1<u,v>:=WeightEnumerator(C);
%Y A006028 Cf. A006006, A010083.
%K A006028 nonn,fini
%O A006028 0,5
%A A006028 _N. J. A. Sloane_