This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006032 M2670 #34 Dec 26 2021 22:09:29 %S A006032 3,7,19,31,41,2687,19697,59693,67421,441697 %N A006032 Numbers k such that (14^k - 1)/13 is prime. %D A006032 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006032 Paul Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a> %H A006032 H. Dubner, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1185243-9">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. %H A006032 H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A006032 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a> %t A006032 lst={};Do[If[PrimeQ[(14^n-1)/13], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *) %o A006032 (PARI) is(n)=isprime((14^n - 1)/13) \\ _Charles R Greathouse IV_, Apr 29 2015 %K A006032 hard,nonn,more %O A006032 1,1 %A A006032 _N. J. A. Sloane_ %E A006032 One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008 %E A006032 a(8) and a(9) correspond to probable primes discovered by _Paul Bourdelais_, Mar 01 2010 %E A006032 a(10) corresponds to a probable prime discovered by _Paul Bourdelais_, Dec 08 2014