This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006034 M2415 #27 Aug 03 2020 08:50:57 %S A006034 3,5,7,11,47,71,419,4799,35149,54919,74509,1990523 %N A006034 Numbers n such that (17^n-1)/16 is prime. %C A006034 No others for any n less than 8447. - Julien Peter Benney (jpbenney(AT)ftml.net), Aug 15 2004 %D A006034 Ribenboim, Paulo; "The Book Of Prime Number Records"; published 1989 by Springer-Verlag; pages 350-354. %D A006034 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006034 H. Dubner, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1185243-9">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. %H A006034 H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A006034 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a> %t A006034 lst={};Do[If[PrimeQ[(17^n-1)/16], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *) %o A006034 (PARI) is(n)=isprime((17^n-1)/16) \\ _Charles R Greathouse IV_, Apr 28 2015 %K A006034 hard,nonn,more %O A006034 1,1 %A A006034 _N. J. A. Sloane_ %E A006034 a(9)=35149 & a(10)=54919 are probable primes discovered by _Paul Bourdelais_, Mar 08 2010 %E A006034 a(11)=74509 is a probable prime discovered by _Paul Bourdelais_, Mar 10 2010 %E A006034 a(12)=1990523 corresponds to a probable prime discovered by _Paul Bourdelais_, Aug 03 2020