A335162 Array read by upward antidiagonals: T(n,k) (n >= 0, k >= 0) = nim k-th power of n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 2, 1, 1, 0, 1, 5, 6, 1, 2, 1, 0, 1, 6, 7, 14, 3, 3, 1, 0, 1, 7, 5, 13, 5, 2, 1, 1, 0, 1, 8, 4, 8, 4, 2, 1, 2, 1, 0, 1, 9, 13, 10, 7, 2, 8, 3, 3, 1, 0, 1, 10, 12, 14, 6, 3, 10, 11, 2, 1, 1, 0, 1, 11, 14, 10, 10, 3, 13, 9, 7, 1, 2, 1, 0, 1, 12, 15, 13, 11, 1, 14, 15, 6, 10, 3, 3, 1, 0
Offset: 0
Examples
The array begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ..., 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, ..., 1, 4, 6,14, 5, 2, 8,11, 7,10, 3,12,13, 9,15, 1, 4, 6, ..., 1, 5, 7,13, 4, 2,10, 9, 6, 8, 3,15,14,11,12, 1, 5, 7, ..., 1, 6, 5, 8, 7, 3,13,15, 4,14, 2,11,10,12, 9, 1, 6, 5, ..., 1, 7, 4,10, 6, 3,14,12, 5,13, 2, 9, 8,15,11, 1, 7, 4, ..., 1, 8,13,14,10, 1, 8,13,14,10, 1, 8,13,14,10, 1, 8,13, ..., 1, 9,12,10,11, 2,14, 4,15,13, 3, 7, 8, 5, 6, 1, 9,12, ..., 1,10,14,13, 8, 1,10,14,13, 8, 1,10,14,13, 8, 1, 10,14, ..., 1,11,15, 8, 9, 2,13, 5,12,14, 3, 6,10, 4, 7, 1, 11,15, ..., 1,12,11,14,15, 3, 8, 6, 9,10, 2, 4,13, 7, 5, 1, 12,11, ..., 1,13,10, 8,14, 1,13,10, 8,14, 1,13,10, 8,14, 1, 13,10, ..., 1,14, 8,10,13, 1,14, 8,10,13, 1,14, 8,10,13, 1, 14, 8, ..., 1,15, 9,13,12, 3,10, 7,11, 8, 2, 5,14, 6, 4, 1, 15, 9, ... ... The initial antidiagonals are: [1] [1, 0] [1, 1, 0] [1, 2, 1, 0] [1, 3, 3, 1, 0] [1, 4, 2, 1, 1, 0] [1, 5, 6, 1, 2, 1, 0] [1, 6, 7, 14, 3, 3, 1, 0] [1, 7, 5, 13, 5, 2, 1, 1, 0] [1, 8, 4, 8, 4, 2, 1, 2, 1, 0] [1, 9, 13, 10, 7, 2, 8, 3, 3, 1, 0] [1, 10, 12, 14, 6, 3, 10, 11, 2, 1, 1, 0] [1, 11, 14, 10, 10, 3, 13, 9, 7, 1, 2, 1, 0] [1, 12, 15, 13, 11, 1, 14, 15, 6, 10, 3, 3, 1, 0] ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..20300
- J. H. Conway, Integral lexicographic codes, Discrete Mathematics 83.2-3 (1990): 219-235. See Table 3.
- Rémy Sigrist, PARI program for A335162
- Index entries for sequences related to Nim-multiplication
Crossrefs
Programs
-
PARI
See Links section.
Formula
From Rémy Sigrist, Jun 12 2020: (Start)
T(n, A212200(n)) = 1 for any n > 0.
T(n, n) = A059971(n).
(End)
Comments