cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006086 Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).

This page as a plain text file.
%I A006086 M4248 #53 Jan 05 2025 19:51:33
%S A006086 1,6,45,60,90,420,630,1512,3780,5460,7560,8190,9100,15925,16632,27300,
%T A006086 31500,40950,46494,51408,55125,64260,66528,81900,87360,95550,143640,
%U A006086 163800,172900,185976,232470,257040,330750,332640,464940,565488,598500,646425,661500
%N A006086 Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).
%C A006086 Let ud(n) and usigma(n) be number of and sum of unitary divisors of n; then the unitary harmonic mean of the unitary divisors is H(n) = n*ud(n)/usigma(n). - _Emeric Deutsch_, Dec 22 2004
%C A006086 A103340(a(n)) = 1; A103339(a(n)) = A006087(n). - _Reinhard Zumkeller_, Mar 17 2012
%D A006086 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006086 Donovan Johnson, <a href="/A006086/b006086.txt">Table of n, a(n) for n = 1..290</a> (terms < 10^12)
%H A006086 Takeshi Goto, <a href="http://doi.org/10.1216/rmjm/1194275935">Upper Bounds for Unitary Perfect Numbers and Unitary Harmonic Numbers</a>, Rocky Mountain Journal of Mathematics, Vol. 37, No. 5 (2007), pp. 1557-1576.
%H A006086 P. Hagis, Jr. and G. Lord, <a href="https://doi.org/10.1090/S0002-9939-1975-0369231-9">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7.
%H A006086 P. Hagis, Jr. and G. Lord, <a href="/A006086/a006086.pdf">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
%H A006086 Charles R. Wall, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/21-1/wall.pdf">Unitary harmonic numbers</a>, Fibonacci Quarterly, Vol. 21, No. 1 (1983), pp. 18-25.
%F A006086 If m is a term and omega(m) = A001221(m) = k, then m < 2^(k*2^k) (Goto, 2007). - _Amiram Eldar_, Jun 06 2020
%t A006086 ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; uhm[n_] := n*ud[n]/usigma[n]; Reap[ Do[ If[ IntegerQ[uhm[n]], Print[n]; Sow[n]], {n, 1, 10^6}]][[2, 1]] (* _Jean-François Alcover_, May 16 2013 *)
%o A006086 (Haskell)
%o A006086 a006086 n = a006086_list !! (n-1)
%o A006086 a006086_list = filter ((== 1) . a103340) [1..]
%o A006086 -- _Reinhard Zumkeller_, Mar 17 2012
%o A006086 (PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
%o A006086 isok(n) = my(v=udivs(n)); denominator(n*#v/vecsum(v))==1; \\ _Michel Marcus_, May 07 2017
%o A006086 (PARI) is(n,f=factor(n))=(n<<(#f~))%sumdivmult([n,f], d, if(gcd(d, n/d)==1, d))==0 \\ _Charles R Greathouse IV_, Nov 05 2021
%o A006086 (PARI) list(lim)=my(v=List()); forfactored(n=1,lim\1, if((n[1]<<omega(n))%sumdivmult(n, d, if(gcd(d, n[1]/d)==1, d))==0, listput(v, n[1]))); Vec(v) \\ _Charles R Greathouse IV_, Nov 05 2021
%Y A006086 See A006087 for more info.
%Y A006086 Cf. A103339, A103340.
%K A006086 nonn,nice
%O A006086 1,2
%A A006086 _N. J. A. Sloane_
%E A006086 More terms from _Emeric Deutsch_, Dec 22 2004