cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006087 Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).

This page as a plain text file.
%I A006087 M0452 #43 Mar 10 2023 09:09:55
%S A006087 1,2,3,4,4,7,7,6,9,13,10,13,10,7,11,15,10,15,9,12,7,17,12,18,16,14,19,
%T A006087 20,19,12,15,20,10,20,18,22,19,13,12,13,17,29,18,33,20,23,29,34,23,22,
%U A006087 31,38,24,23,38,33,37,40,19,38,24,37,29,40,22,34,24,33
%N A006087 Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).
%C A006087 Let d(n) and sigma(n) be number and sum of unitary divisors of n; then unitary harmonic mean of unitary divisors is H(n)=n*d(n)/sigma(n).
%C A006087 Each term appears a finite number of times in the sequence (Hagis and Lord, 1975). - _Amiram Eldar_, Mar 10 2023
%D A006087 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006087 Donovan Johnson, <a href="/A006087/b006087.txt">Table of n, a(n) for n = 1..290</a>
%H A006087 Peter Hagis, Jr. and Graham Lord, <a href="https://doi.org/10.1090/S0002-9939-1975-0369231-9">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7.
%H A006087 Peter Hagis, Jr. and Graham Lord, <a href="/A006086/a006086.pdf">Unitary harmonic numbers</a>, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
%F A006087 a(n) = A103339(A006086(n)). - _Reinhard Zumkeller_, Mar 17 2012
%p A006087 A034444 := proc(n) 2^nops(ifactors(n)[2]) ; end: A034448 := proc(n) local ans,i,ifs ; ans :=1 ; ifs := ifactors(n)[2] ; for i from 1 to nops(ifs) do ans := ans*(1+ifs[i][1]^ifs[i][2]) ; od ; RETURN(ans) ; end: A006086 := proc(n) n*A034444(n)/A034448(n) ; end: for n from 1 to 5000000 do uhn := A006086(n) : if type(uhn,'integer') then printf("%d, ",uhn) ; fi ; od : # _R. J. Mathar_, Jun 06 2007
%t A006087 ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := n*ud[n]/usigma[n]; a[1] = 1; Reap[ Do[ If[ IntegerQ[h = a[n]], Print[h]; Sow[h]], {n, 1, 10^7}]][[2, 1]] (* _Jean-François Alcover_, May 16 2013 *)
%t A006087 uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; Select[Array[uh, 10^6], IntegerQ] (* _Amiram Eldar_, Mar 10 2023 *)
%o A006087 (PARI) {ud(n)=2^omega(n)} {sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))} {H(n)=n*ud(n)/sud(n)} for(n=1,10000000,if(((n*ud(n))%sud(n))==0,print1(H(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
%o A006087 (PARI) uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };
%o A006087 lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(uh, ", ")));} \\ _Amiram Eldar_, Mar 10 2023
%o A006087 (Haskell)
%o A006087 import Data.Ratio ((%), numerator, denominator)
%o A006087 a006087 n = a006087_list !! (n-1)
%o A006087 a006087_list = map numerator $ filter ((== 1) . denominator) $
%o A006087    map uhm [1..]  where uhm n = (n * a034444 n) % (a034448 n)
%o A006087 -- _Reinhard Zumkeller_, Mar 17 2012
%Y A006087 Cf. A006086, A034444, A034448, A077610.
%K A006087 nonn,nice
%O A006087 1,2
%A A006087 _N. J. A. Sloane_
%E A006087 More terms from _R. J. Mathar_, Jun 06 2007
%E A006087 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008