cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006091 a(n) = n^n - n + 1.

This page as a plain text file.
%I A006091 M3111 #50 Apr 17 2025 01:55:05
%S A006091 1,3,25,253,3121,46651,823537,16777209,387420481,9999999991,
%T A006091 285311670601,8916100448245,302875106592241,11112006825558003,
%U A006091 437893890380859361,18446744073709551601,827240261886336764161,39346408075296537575407,1978419655660313589123961
%N A006091 a(n) = n^n - n + 1.
%C A006091 Related to famous "coconuts" problem - cf. A002021, A002022.
%D A006091 Archimedeans Problems Drive, Eureka, 41 (1981), 7.
%D A006091 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006091 Vincenzo Librandi, <a href="/A006091/b006091.txt">Table of n, a(n) for n = 1..200</a>
%H A006091 Archimedeans Problems Drive, <a href="/A006091/a006091.pdf">Problems for 1980</a>, Eureka, 41 (1981), 6-7. (Annotated scanned copy)
%H A006091 J. Burkardt, <a href="http://web.archive.org/web/20120626221916/http://orion.math.iastate.edu/burkardt/puzzles/coconut_puzzle.html">The Coconut puzzle (version 3)</a>
%H A006091 Santo D'Agostino, <a href="https://fomap.org/2011/05/13/the-coconut-problem/">"The Coconut Problem"; Updated With Solution</a>, May 2011.
%H A006091 Mark Richardson, <a href="https://doi.org/10.15200/winn.147175.52128">A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Famous Coconuts Problem</a>, The Winnower, Authorea (2016) Vol. 3.
%F A006091 E.g.f.: 1/(1 + LambertW(-x)) + exp(x)*(1 - x) - 2. - _Ilya Gutkovskiy_, Oct 30 2017
%t A006091 Table[n^n-n+1,{n,20}] (* _Harvey P. Dale_, Jun 09 2011 *)
%o A006091 (Magma) [n^n - n + 1: n in [1..20]]; // _Vincenzo Librandi_, Aug 23 2011
%o A006091 (PARI) A006091(n)=n^n-n+1 \\ _M. F. Hasler_, Oct 30 2017
%Y A006091 Cf. A014293.
%K A006091 nonn,easy
%O A006091 1,2
%A A006091 _N. J. A. Sloane_