This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A006099 M2700 #28 Feb 16 2025 08:32:29 %S A006099 1,1,3,7,35,155,1395,11811,200787,3309747,109221651,3548836819, %T A006099 230674393235,14877590196755,1919209135381395,246614610741341843, %U A006099 63379954960524853651,16256896431763117598611,8339787869494479328087443,4274137206973266943778085267 %N A006099 Gaussian binomial coefficient [ n, n/2 ] for q=2. %D A006099 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A006099 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A006099 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006099 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A006099 T. D. Noe, <a href="/A006099/b006099.txt">Table of n, a(n) for n=0..50</a>. %H A006099 M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy) %H A006099 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-BinomialCoefficient.html">q-Binomial Coefficient</a>. %F A006099 a(n) ~ c * 2^(n^2/4), where c = 1 / QPochhammer[1/2, 1/2] = A065446 = 3.46274661945506361153795734292443116454... if n is even, and c = 2^(-1/4) / QPochhammer[1/2, 1/2] = 2^(-1/4) * A065446 = 2.911811219231681420726836976930855961516... if n is odd. - _Vaclav Kotesovec_, Jun 22 2014 %t A006099 Table[QBinomial[n,Floor[n/2],2],{n,0,20}] (* _Harvey P. Dale_, Sep 07 2013 *) %Y A006099 Cf. A065446. %K A006099 nonn %O A006099 0,3 %A A006099 _N. J. A. Sloane_ %E A006099 More terms from _Harvey P. Dale_, Sep 07 2013