cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006114 Gaussian binomial coefficient [ 2n,n ] for q=5.

This page as a plain text file.
%I A006114 M4314 #25 Jun 10 2018 11:47:21
%S A006114 1,6,806,2558556,200525284806,391901483074853556,
%T A006114 19138263752352528498478556,23362736428829868448189697999416056,
%U A006114 712977784594148279816735342927316866304884806,543959438081999965602054955428186322207689611643379103556
%N A006114 Gaussian binomial coefficient [ 2n,n ] for q=5.
%D A006114 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D A006114 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D A006114 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A006114 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H A006114 Robert Israel, <a href="/A006114/b006114.txt">Table of n, a(n) for n = 0..36</a>
%H A006114 M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
%H A006114 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>
%p A006114 with(QDifferenceEquations):
%p A006114 seq(eval(QSimpComb(QBinomial(2*n,n,q)),q=5), n=0..12); # _Robert Israel_, Feb 01 2018
%t A006114 Table[QBinomial[2n,n,5],{n,0,10}] (* _Harvey P. Dale_, Jun 10 2018 *)
%K A006114 nonn
%O A006114 0,2
%A A006114 _N. J. A. Sloane_