cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

This page as a plain text file.
%I A006128 M2552 #246 Feb 16 2025 08:32:29
%S A006128 0,1,3,6,12,20,35,54,86,128,192,275,399,556,780,1068,1463,1965,2644,
%T A006128 3498,4630,6052,7899,10206,13174,16851,21522,27294,34545,43453,54563,
%U A006128 68135,84927,105366,130462,160876,198014,242812,297201,362587,441546,536104,649791,785437,947812,1140945,1371173,1644136,1968379,2351597,2805218,3339869,3970648,4712040,5584141,6606438,7805507,9207637
%N A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.
%C A006128 a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - _Wolfdieter Lang_
%C A006128 Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - _Thomas Wieder_, May 20 2004
%C A006128 Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - _Thomas Baruchel_, Nov 07 2005
%C A006128 Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - _Gary W. Adamson_, Feb 13 2008
%C A006128 Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - _Gary W. Adamson_, Jun 16 2009
%C A006128 Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - _Gary W. Adamson_, Mar 21 2011
%C A006128 More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - _Omar E. Pol_, Feb 14 2012
%C A006128 Row sums of triangle A221530. - _Omar E. Pol_, Jan 21 2013
%C A006128 From _Omar E. Pol_, Feb 04 2021: (Start)
%C A006128 a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
%C A006128 Apart from initial zero this is also as follows:
%C A006128 Convolution of A000005 and A000041.
%C A006128 Convolution of A006218 and A002865.
%C A006128 Convolution of A341062 and A000070.
%C A006128 Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
%C A006128 Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - _Gus Wiseman_, Apr 19 2021
%D A006128 S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
%D A006128 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006128 T. D. Noe and Vaclav Kotesovec, <a href="/A006128/b006128.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H A006128 Paul Erdős and Joseph Lehner, <a href="http://dx.doi.org/10.1215/S0012-7094-41-00826-8">The distribution of the number of summands in the partitions of a positive integer</a>, Duke Math. J. 8, (1941), 335-345.
%H A006128 John A. Ewell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-1/quartewell01_2007.pdf">Additive evaluation of the divisor function</a>, Fibonacci Quart. 45 (2007), no. 1, 22-25. See Table 1.
%H A006128 Guo-Niu Han, <a href="http://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths</a>, arXiv:0804.1849 [math.CO], 2008; see p.27
%H A006128 I. Kessler and M. Livingston, <a href="http://dx.doi.org/10.1007/BF01303193">The expected number of parts in a partition of n</a>, Monatsh. Math. 81 (1976), no. 3, 203-212.
%H A006128 I. Kessler and M. Livingston, <a href="https://eudml.org/doc/177752">The expected number of parts in a partition of n</a>, Monatsh. Math. 81 (1976), no. 3, 203-212.
%H A006128 Martin Klazar, <a href="http://arxiv.org/abs/1808.08449">What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I</a>, arXiv:1808.08449 [math.CO], 2018.
%H A006128 Vaclav Kotesovec, <a href="/A006128/a006128.jpg">Graph - The asymptotic ratio</a>
%H A006128 Arnold Knopfmacher and Neville Robbins, <a href="http://www.plouffe.fr/OEIS/citations/robbinspart.pdf">Identities for the total number of parts in partitions of integers</a>, Util. Math. 67 (2005), 9-18.
%H A006128 S. M. Luthra, <a href="/A006128/a006128.pdf">On the average number of summands in partitions of n</a>, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
%H A006128 C. L. Mallows & N. J. A. Sloane, <a href="/A006123/a006123.pdf">Emails, May 1991</a>
%H A006128 C. L. Mallows & N. J. A. Sloane, <a href="/A006123/a006123_1.pdf">Emails, Jun. 1991</a>
%H A006128 Ljuben Mutafchiev, <a href="https://arxiv.org/abs/1712.03233">On the Largest Part Size and Its Multiplicity of a Random Integer Partition</a>, arXiv:1712.03233 [math.PR], 2017.
%H A006128 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa408.jpg">Illustration of initial terms</a>
%H A006128 J. Sandor, D. S. Mitrinovic, B. Crstici, <a href="http://books.google.com/books?id=XT1-HjeXFgYC&amp;pg=PA495">Handbook of Number Theory I, Volume 1</a>, Springer, 2005, p. 495.
%H A006128 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/q-PolygammaFunction.html">q-Polygamma Function</a>, <a href="https://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>.
%H A006128 H. S. Wilf, <a href="http://www.math.upenn.edu/~wilf/website/Unified%20setting%20II.pdf">A unified setting for selection algorithms (II)</a>, Annals Discrete Math., 2 (1978), 135-148.
%F A006128 G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
%F A006128 G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
%F A006128 a(n) = Sum_{k=1..n} k*A008284(n, k).
%F A006128 a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
%F A006128 Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - _Omar E. Pol_, Jan 21 2013
%F A006128 Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
%F A006128 a(n) = A066897(n) + A066898(n), n>0. - _Reinhard Zumkeller_, Mar 09 2012
%F A006128 a(n) = A066186(n) - A196087(n), n >= 1. - _Omar E. Pol_, Apr 22 2012
%F A006128 a(n) = A194452(n) + A024786(n+1). - _Omar E. Pol_, May 19 2012
%F A006128 a(n) = A000203(n) + A220477(n). - _Omar E. Pol_, Jan 17 2013
%F A006128 a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - _Omar E. Pol_, May 12 2013
%F A006128 a(n) = A198381(n) + A026905(n), n >= 1. - _Omar E. Pol_, Aug 10 2013
%F A006128 a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - _Peter Bala_, Dec 23 2013
%F A006128 a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - _Omar E. Pol_, Jul 14 2014
%F A006128 From _Vaclav Kotesovec_, Jun 23 2015: (Start)
%F A006128 Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
%F A006128 The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
%F A006128 Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
%F A006128 or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
%F A006128 (End)
%F A006128 G.f.: (log(1-x) + psi_x(1))/(log(x) * (x)_inf), where psi_q(z) is the q-digamma function, and (q)_inf is the q-Pochhammer symbol (the Euler function). - _Vladimir Reshetnikov_, Nov 17 2016
%F A006128 a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - _Omar E. Pol_, Feb 05 2021 2014
%e A006128 For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
%p A006128 g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
%p A006128 a:= n-> coeff(series(g,x,62),x,n):
%p A006128 seq(a(n), n=0..61);
%p A006128 # second Maple program:
%p A006128 a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
%p A006128 seq(a(n), n=0..61);  # _Alois P. Heinz_, Aug 23 2019
%t A006128 a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
%t A006128 CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
%t A006128 a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* _Robert G. Wilson v_, Apr 12 2011 *)
%t A006128 Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* _Vladimir Reshetnikov_, Nov 17 2016 *)
%t A006128 Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* _Shouvik Datta_, Sep 12 2021 *)
%o A006128 (PARI) f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]<n, i=2;while(v[i]==0,i++);v[i]--;s=sum(k=i,n,k*v[k]); while(i>1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* _Thomas Baruchel_, Nov 07 2005 */
%o A006128 (PARI) a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ _Michel Marcus_, Jul 13 2013
%o A006128 (Haskell)
%o A006128 a006128 = length . concat . ps 1 where
%o A006128    ps _ 0 = [[]]
%o A006128    ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
%o A006128 -- _Reinhard Zumkeller_, Jul 13 2013
%o A006128 (Python)
%o A006128 from sympy import divisor_count, npartitions
%o A006128 def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # _Indranil Ghosh_, Apr 25 2017
%o A006128 (GAP) List([0..60],n->Length(Flat(Partitions(n)))); # _Muniru A Asiru_, Oct 12 2018
%Y A006128 Cf. A093694, A008284, A000005, A066633, A085410, A046746, A209423, A285220, A336902, A336903.
%Y A006128 Main diagonal of A210485.
%Y A006128 Column k=1 of A256193.
%Y A006128 The version for normal multisets is A001787.
%Y A006128 The unordered version is A001792.
%Y A006128 The strict case is A015723.
%Y A006128 The version for factorizations is A066637.
%Y A006128 A000041 counts partitions.
%Y A006128 A000070 counts partitions with a selected part.
%Y A006128 A336875 counts compositions with a selected part.
%Y A006128 A339564 counts factorizations with a selected factor.
%Y A006128 Cf. A066186, A083710, A130689, A264401, A276024, A343341.
%K A006128 nonn,easy,nice
%O A006128 0,3
%A A006128 _N. J. A. Sloane_, _Colin Mallows_